Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(xy+3x-7y-21\)
\(=x\left(y+3\right)-7\left(y+3\right)\)
\(=\left(y+3\right)\left(x-7\right)\)
\(b,2xy-15-6x+5y\)
\(=\left(2xy-6x\right)+\left(-15+5y\right)\)
\(=2x\left(y-3\right)-5\left(3-y\right)\)
\(=2x\left(y-3\right)+5\left(y-3\right)\)
\(=\left(y-3\right)\left(2x+5\right)\)
a. x3+5x2+3x-9
= x3-x2+6x2-6x+9x-9
= x2(x-1)+6x(x-1)+9(x-1)
= (x2+6x+9)(x-1)
= (x+3)2(x-1)
b. x3+9x2+11x-21
= x3-x2+10x2-10x+21x-21
= x2(x-1)+10x(x-1)+21(x-1)
= (x2+10x+21)(x-1)
= (x+7)(x+3)(x-1)
c. x3-7x+6
= x3-x2+x2-x-6x+6
= x2(x-1)+x(x-1)-6(x-1)
= (x2+x-6)(x-1)
= (x+3)(x-2)(x-1)
d. x3-5x2+8x-4
= x3-x2-4x2+4x+4x-4
= x2(x-1)-4x(x-1)+4(x-1)
= (x2-4x+4)(x-1)
= (x-2)2(x-1)
e. x3-3x+2
= x3+2x2-2x2-4x+x+2
= x2(x+2)-2x(x+2)+(x+2)
= (x2-2x+1)(x+2)
= (x-1)2(x+2)
f. x3+8x2+17x+10
= x3+5x2+3x2+15x+2x+10
= x2(x+5)+3x(x+5)+2(x+5)
= (x2+3x+2)(x+5)
= (x+1)(x+2)(x+5)
g. x3+3x2+6x+4
= x3+x2+2x2+2x+4x+4
= x2(x+1)+2x(x+1)+4(x+1)
= (x2+2x+4)(x+1)
h. x3-2x-4
= x3-2x2+2x2-4x+2x-4
= x2(x-2)+2x(x-2)+2(x-2)
= (x2+2x+2)(x-2)
k. x3+x2+4
= x3+2x2-x2-2x+2x+4
= x2(x+2)-x(x+2)+2(x+2)
= (x2-x+2)(x+2)
l. x3-12x+7x-2
= x3+2x2-2x2-4x-x-2
= x2(x+2)-2x(x+2)-(x+2)
= (x2-2x-1)(x+2)
Lời giải:
\(P(x)=x(x+2)(x+3)(x+5)-7\)
\(=[x(x+5)][(x+2)(x+3)]-7\)
\(=(x^2+5x)(x^2+5x+6)-7\)
\(=a(a+6)-7\) (đặt \(x^2+5x=a\) )
\(=a^2+6a-7=a^2-a+7a-7\)
\(=a(a-1)+7(a-1)=(a-1)(a+7)\)
\(=(x^2+5x-1)(x^2+5x+7)\)
-----------------
\(Q(x)=(4x-2)(10x+4)(5x+7)(2x+1)+17\)
\(=4(2x-1)(5x+2)(5x+7)(2x+1)+17\)
\(=4[(2x-1)(5x+7)][(5x+2)(2x+1)]+17\)
\(=4(10x^2+9x-7)(10x^2+9x+2)+17\)
\(=4a(a+9)+17\) (đặt \(10x^2+9x-7=a\)
\(=4a^2+36a+17=(2a+9)^2-8^2\)
\(=(2a+9-8)(2a+9+8)=(2a+1)(2a+17)\)
\(=(20x^2+18x-13)(20x^2+18x+3)\)
\(R(x)=(3x+2)(3x-5)(x-1)(9x+10)+24x^2\)
\(=[(3x+2)(3x-5)][(x-1)(9x+10)]+24x^2\)
\(=(9x^2-9x-10)(9x^2+x-10)+24x^2\)
\(=(a-9x)(a+x)+24x^2\) (đặt \(9x^2-10=a\) )
\(=a^2-8ax+15x^2=(a^2-5ax)-(3ax-15x^2)\)
\(=a(a-5x)-3x(a-5x)=(a-3x)(a-5x)\)
\(=(9x^2-3x-10)(9x^2-5x-10)\)
--------------------------
\(H(x)=(x-18)(x-7)(x+35)(x+90)-67x^2\)
\(=[(x-18)(x+35)][(x-7)(x+90)]-67x^2\)
\(=(x^2+17x-630)(x^2+83x-630)-67x^2\)
\(=a(a+66x)-67x^2\) (đặt \(x^2+17x-630=a\) )
\(=a^2-ax+67ax-67x^2\)
\(=a(a-x)+67x(a-x)=(a-x)(a+67x)\)
\(=(x^2+16x-630)(x^2+84x-630)\)
a/\(x^2-5x+6=x^2-2x-3x+6=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)b/
\(3x^2+9x-30=3\left(x^2+3x-10\right)\)
c/
\(x^2-3x+2=x^2-x-2x+2=x\left(x-1\right)-2\left(x-1\right)=\left(x-1\right)\left(x-2\right)\)
d/\(x^2-9x+18=x^2-3x-6x+18=x\left(x-3\right)-6\left(x-3\right)=\left(x-3\right)\left(x-6\right)\)e/
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-2\right)\left(x-4\right)\)f/\(x^2-5x-14=x^2+2x-7x-14=x\left(x+2\right)-7\left(x+2\right)=\left(x+2\right)\left(x-7\right)\)
g/
\(x^2-6x+5=x^2-x-5x+5=x\left(x-1\right)-5\left(x-1\right)=\left(x-1\right)\left(x-5\right)\)
h/
\(x^2-7x+12=x^2-4x-3x+12=x\left(x-4\right)-3\left(x-4\right)=\left(x-4\right)\left(x-3\right)\)i/\(x^2-7x+10=x^2-2x-5x+10=x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(x-5\right)\)
a) Ta có: \(x^2-5x+6\)
\(=x^2-2x-3x+6\)
\(=x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(x-3\right)\)
b) Ta có: \(3x^2+9x-30\)
\(=3\left(x^2+3x-10\right)\)
\(=3\left(x^2+5x-2x-10\right)\)
\(=3\left[x\left(x+5\right)-2\left(x+5\right)\right]\)
\(=3\left(x+5\right)\left(x-2\right)\)
c) Ta có: \(x^2-3x+2\)
\(=x^2-x-2x+2\)
\(=x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(x-2\right)\)
d) Ta có: \(x^2-9x+18\)
\(=x^2-3x-6x+18\)
\(=x\left(x-3\right)-6\left(x-3\right)\)
\(=\left(x-3\right)\left(x-6\right)\)
e) Ta có: \(x^2-6x+8\)
\(=x^2-4x-2x+8\)
\(=x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
f) Ta có: \(x^2-5x-14\)
\(=x^2-7x+2x-14\)
\(=x\left(x-7\right)+2\left(x-7\right)\)
\(=\left(x-7\right)\left(x+2\right)\)
g) Ta có: \(x^2-6x+5\)
\(=x^2-x-5x+5\)
\(=x\left(x-1\right)-5\left(x-1\right)\)
\(=\left(x-1\right)\left(x-5\right)\)
h) Ta có: \(x^2-7x+12\)
\(=x^2-3x-4x+12\)
\(=x\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x-4\right)\)
i) Ta có: \(x^2-7x+10\)
\(=x^2-2x-5x+10\)
\(=x\left(x-2\right)-5\left(x-2\right)\)
\(=\left(x-2\right)\left(x-5\right)\)
\(B=7x^2-7xy-5x+5y\)
\(=7x\left(x-y\right)-5\left(x-y\right)\)
\(=\left(x-y\right)\left(7x-5\right)\)
\(E=x^2+7x+12\)
\(=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+3\right)\left(x+4\right)\)
\(F=x^2-9x+18\)
\(=x^2-3x-6x+18\)
\(=x\left(x-3\right)-6\left(x-3\right)\)
\(=\left(x-3\right)\left(x-6\right)\)
\(H=8x^2-2x-1\)
\(=8x^2-4x+2x-1\)
\(=4x\left(2x-1\right)+\left(2x-1\right)\)
\(=\left(2x-1\right)\left(4x+1\right)\)
a) x2 + 5x + 4
= x2 + x + 4x + 4
= x (x+1) + 4 (x+1)
= (x+1) ( x+4)
c) x2 - 7x + 12
= x2 - 3x - 4x +12
= x(x-3) - 4(x-3)
= (x-3)( x-4)
m) \(5x^2+6x+1\)
\(=5x^2+5x+x+1\)
\(=5x\left(x+1\right)+\left(x+1\right)\)
\(=\left(5x+1\right)\left(x+1\right)\)