\(\frac{11^{13}+1}{11^{14}+1}\)và \(\frac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2017

Vì 1113 . 1115 = 1114 . 1114 = 1128 nên \(\frac{11^{13}+1}{11^{14}+1}=\frac{11^{14}+1}{11^{15}+1}\)

9 tháng 3 2020

Bài 1 :

Đặt \(A=\frac{11^{13}+1}{11^{14}+1}\) và \(B=\frac{11^{14}+1}{11^{15}+1}\)

Có : \(A=\frac{11^{13}+1}{11^{14}+1}\)

\(\Rightarrow11A=\frac{11^{14}+11}{11^{14}+1}=\frac{11^{14}+1+10}{11^{14}+1}=1+\frac{10}{11^{14}+1}\)

Lại có : \(B=\frac{11^{14}+1}{11^{15}+1}\)

\(\Rightarrow11B=\frac{11^{15}+11}{11^{15}+1}=\frac{11^{15}+1+10}{11^{15}+1}=1+\frac{10}{11^{15}+1}\)

Vì 1114+1<1115+1

\(\Rightarrow\frac{10}{11^{14}+1}>\frac{10}{11^{15}+1}\Rightarrow1+\frac{10}{11^{14}+1}>1+\frac{10}{11^{15}+1}\Rightarrow11A>11B\Rightarrow A>B\)

Vậy A>B.

9 tháng 3 2020

Bài 2 :

a) Gọi (n+1,2n+3) là d  (d là số tự nhiên khác 0)

\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\left(2n+3\right)-\left(n+1\right)⋮d\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

nên (n+1,2n+3) là 1

\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản(đpcm)

b) Gọi (12n+1,30n+2) là d  (d là số tự nhiên khác 0)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)

\(\Rightarrow\left(12n+1\right)-\left(30n+2\right)⋮d\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

nên (12n+1,30n+2) là 1

\(\Rightarrow\)Phân số \(\frac{12n+1}{30n+2}\)tối giản(đpcm)

c và d tương tự

23 tháng 6 2018

trả lời giúp mình nha! mình sẽ cho  ^^

23 tháng 6 2018

11/14   12/13     15/15    33/32    34/31

11 tháng 4 2017

kb đc 0

11 tháng 4 2017

2 câu đầu tôi làm đc

6 tháng 5 2018

\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{100}\)

\(A< \frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{100.101}\)

\(A< \frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{101}\)

\(A< \frac{1}{10}-\frac{1}{101}=\frac{101}{1010}-\frac{10}{1010}=\frac{91}{1010}< \frac{505}{1010}\)

\(A< \frac{1}{2}\)

28 tháng 11 2017

a) Với a>b thì => (a+n).b=ab+bn>ab+an=a(b+n)=>(a+n).b>a.(b+n)

=> a+nb+n >ab 

Với b>a thì chứng minh tương tự ta được a+nb+n <ab 

Với a=b thì chứng minh tương tự ta được a+nb+n =ab

28 tháng 11 2017

\(B=\frac{10^{10}+1}{10^{11}+1}=\frac{10^{11}+10}{10^{12}+10}=\frac{10^{11}-1+11}{10^{12}-1+11}< \frac{10^{11}-1}{10^{12}-1}=A\)=> A>B

27 tháng 2 2018

Ta có : các phân số từ 1/11 ; 1/12  đến  1/19 đều lớn hơn phân số 1/20

Từ đó lại có : 1/11 + 1/12 + 1/13 + ... + 1/19 + 1/20 > 1/20 + 1/20 + 1/20+ ...+ 1/20 (  số số hạng gồm 10 phân số 1/20)

=> 1/11+ 1/12+ 1/13+...+ 1/20 > 10/20

=>  1/11+1/12+1/13+...+1/20  > 1/2

<=>    S   > 1/2 .

27 tháng 2 2018

Ta có : 

\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\) ( 10 số \(\frac{1}{20}\) )

\(S>\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)

Vậy \(S>\frac{1}{2}\)

2 tháng 3 2017

\(A-B=\frac{\left(10^{11}-1\right)\left(10^{11}+1\right)-\left(10^{12}-1\right)\left(10^{10}+1\right)}{MSC>0}=\frac{\left(10^{22}-1\right)-\left(10^{22}+10^{12}-10^{10}-1\right)}{MSC>0}\)

\(A-B=\frac{\left(10^{10}-10^{12}\right)< 0}{MSC>0}< 0\Rightarrow A< B\)

21 tháng 5 2017

d)

đặt A = 1 + 2 + 22 + ... + 280 

2A = 2 + 22 + 23 + ... + 281

2A - A = ( 2 + 22 + 23 + ... + 281 ) - ( 1 + 2 + 22 + ... + 280 )

A = 281 - 1 > 281 - 2

e) 

đặt \(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{899}{900}\)

\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{900}\right)\)

\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)

\(A=29-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\right)\)

đặt \(B=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{900}\)

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{30^2}\)

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{29.30}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{29}-\frac{1}{30}\)

\(=1-\frac{1}{30}=\frac{29}{30}< 1\)

\(\Rightarrow A< 29\)

30 tháng 9 2020

So sánh C và D biết
C=1+13+13^2+...+13^13/1+13+13^2+...+13^12
D=1+11+11^2+...+11^13/1+11+11^2+...+11^12