Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a) }\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\\ =\sqrt{5+1+2\sqrt{5}}+\sqrt{5+1-2\sqrt{5}}\\ =\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\\ =\sqrt{5}+1+\sqrt{5}-1\\ =2\sqrt{5}\)
\(\text{b) }\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}\\ =\sqrt{3+2+2\sqrt{6}}+\sqrt{3+2-2\sqrt{6}}\\ =\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\\ =\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\\ =2\sqrt{3}\)
\(\text{c) }\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\\ =\sqrt{7+1-2\sqrt{7}}-\sqrt{7+1+2\sqrt{7}}\\ =\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\\ =\sqrt{7}-1-\sqrt{7}-1\\ =-2\)
\(\text{d) }\sqrt{29+12\sqrt{5}}+\sqrt{29-12\sqrt{5}}\\ =\sqrt{20+9+12\sqrt{5}}+\sqrt{20+9-12\sqrt{5}}\\ =\sqrt{\left(\sqrt{20}+3\right)^2}+\sqrt{\left(\sqrt{20}-3\right)^2}\\ =\sqrt{20}+3+\sqrt{20}-3\\ =2\sqrt{20}\\ =4\sqrt{5}\)
\(\text{e) }\left(\sqrt{0,25}-\sqrt{225}+\sqrt{2,25}\right):\sqrt{169}\\ =\left(0,5-15+1,5\right):13\\ =\left(-13\right):13=-1\)
\(\text{f) }3-\sqrt{5}+3+\sqrt{5}\\ =6\)
1) Để : \(\sqrt{6x+1}\) xác định thì :
6x + 1 ≥ 0 ⇔ x ≥ \(\dfrac{-1}{6}\)
2) Để : \(\sqrt{\dfrac{-3}{2+x}}\) xác định thì :
\(\dfrac{-3}{2+x}\) ≥ 0 ( x # - 2)
⇔ 2 + x < 0 ⇔ x < - 2
3) Để : \(\sqrt{-8x}\) xác định thì :
-8x ≥ 0 ⇔ x < 0
4) Để : \(\sqrt{4-5x}\) xác định thì :
4 - 5x ≥ 0 ⇔ - 5x ≥ - 4 ⇔ x ≤ 4/5
Còn lại bạn giải tương tự nhé
1.\(=5\sqrt{2}-3\sqrt{2}+10\sqrt{2}-9\sqrt{2}=3\sqrt{2}\)
2.\(=5\sqrt{5}+4\sqrt{5}-9\sqrt{5}=0\)
Võ Đông Anh Tuấn
Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)
a)
\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)
Vậy \(7>3\sqrt{5}\)
b)
\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)
Vậy \(8< 2\sqrt{7}+3\)
c)
\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)
Vậy \(3\sqrt{6}< 2\sqrt{15}\)
Mình làm một vài câu thôi nhé, các câu còn lại tương tự.
Giải:
a) ??? Đề thiếu
b) \(\sqrt{-3x+4}=12\)
\(\Leftrightarrow-3x+4=144\)
\(\Leftrightarrow-3x=140\)
\(\Leftrightarrow x=\dfrac{-140}{3}\)
Vậy ...
c), d), g), h), i), p), q), v), a') Tương tự b)
w), x) Mình đã làm ở đây:
Câu hỏi của Ami Yên - Toán lớp 9 | Học trực tuyến
z) \(\sqrt{16\left(x+1\right)^2}-\sqrt{9\left(x+1\right)^2}=4\)
\(\Leftrightarrow4\left(x+1\right)-3\left(x+1\right)=4\)
\(\Leftrightarrow x+1=4\)
\(\Leftrightarrow x=3\)
Vậy ...
b') \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}=\sqrt{x+1}\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-\sqrt{x+1}=0\)
\(\Leftrightarrow4\sqrt{x+1}=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy ...
- Câu a có chút thiếu sót, mong thông cảm :)
\(\sqrt{3x-1}\) = 4
a) Ta có:
\(6\sqrt{5}=\sqrt{5\cdot36}=\sqrt{180}\)
\(5\sqrt{6}=\sqrt{6\cdot25}=\sqrt{200}\)
Mà \(\sqrt{180}< \sqrt{200}\)
Vậy: \(6\sqrt{5}< 5\sqrt{6}\)
x) Ta có: \(\sqrt{8}< \sqrt{9}\Rightarrow\sqrt{8}< 3\)
Công hai vế của BĐT cho 3:
Suy ra: \(\sqrt{8}+3< 3+3=6\)
Vậy: \(\sqrt{8}+3< 6\)
b) Ta có:
\(\sqrt{2\sqrt{3}}=\sqrt[4]{12}\)
Tương tự: \(\sqrt{3\sqrt{2}}=\sqrt[4]{18}\)
Mà \(\sqrt[4]{18}>\sqrt[4]{12}\)
Vậy.....
d) Ta có:
\(2\sqrt{5}-5=\sqrt{5}+\sqrt{5}-5=\left(\sqrt{5}-2\right)+\left(\sqrt{5}-3\right)>\sqrt{5}-3\)
Vậy ......
e) Ta có:
\(\sqrt{2}-2=\frac{3\sqrt{2}-6}{3}\)
\(\sqrt{3}-3=\frac{2\sqrt{3}-6}{2}\)
Mà \(3\sqrt{2}>2\sqrt{3}\)
Vậy .....
f) ........... Đang thinking
a)\(2\sqrt{27}=\sqrt{4\cdot27}=\sqrt{108}< \sqrt{147}\)
b)\(-3\sqrt{5}=-\sqrt{9\cdot5}=-\sqrt{45}>-\sqrt{75}=-\sqrt{25\cdot3}=-5\sqrt{3}\)
c) ta có
\(21=\sqrt{21\cdot21}=\sqrt{441}\\ 2\sqrt{7}=\sqrt{28}\\ 15\sqrt{3}=\sqrt{\left(15\cdot15\right)\cdot3}=\sqrt{675}\\ -\sqrt{123}\)
=> thứ tự lần lượt là:
\(-\sqrt{123};2\sqrt{7};21;15\sqrt{3}\)
d)\(2\sqrt{15}=\sqrt{60}>\sqrt{59}\)
e)\(2\sqrt{2}=\sqrt{8}-1< \sqrt{9}-1=3-1=2\)
f)\(6=\sqrt{36}< \sqrt{41}\)