Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(2x-1\right)^3=-8\)
\(\Rightarrow\left(2x-1\right)^3=\left(-2\right)^3\)
\(\Rightarrow2x-1=-2\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\dfrac{1}{2}\)
\(b,\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{4}\right)^2\)
\(\Rightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)
\(\Rightarrow x=-\dfrac{1}{4}\)
\(c,\left(2x+3\right)^2=\dfrac{9}{121}\)
\(\Rightarrow\left(2x+3\right)^2=\left(\dfrac{3}{11}\right)^2\)
\(\Rightarrow2x+3=\dfrac{3}{11}\)
\(\Rightarrow2x=-\dfrac{30}{11}\)
\(\Rightarrow x=-\dfrac{15}{11}\)
\(d,\left(2x-1\right)^3=-\dfrac{8}{27}\)
\(\Rightarrow\left(2x-1\right)^3=\left(-\dfrac{2}{3}\right)^3\)
\(\Rightarrow2x-1=-\dfrac{2}{3}\)
\(\Rightarrow2x=\dfrac{1}{3}\Rightarrow x=\dfrac{1}{6}\)
\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{1}{4}\right)^2\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\Leftrightarrow x=\dfrac{-1}{4}\)
\(\left(2x+3\right)^2=\dfrac{9}{121}\Leftrightarrow\left(2x+3\right)^2=\left(\dfrac{3}{11}\right)^2\Leftrightarrow2x+3=\dfrac{3}{11}\Leftrightarrow x=\dfrac{-15}{11}\)
\(\left(2x-1\right)^3=-8\Leftrightarrow\left(2x-1\right)^3=\left(-2\right)^3\Leftrightarrow2x-1=-2\Leftrightarrow2x=-1\Leftrightarrow x=\dfrac{-1}{2}\)
a) Ta có :
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Mà 8^75 < 9^75 => 2^225<3^150
b) Ta có
2^91=(2^13)^7=8192^7
3^35=(3^5)^7=243^7
mà 8192^7<243^7=> 2^91<3^35
c) 3^4000=(3^2)^2000=9^2000
d) 2^332 < 2^333=2^3^111=8^111
3^223>3^222=9^111
=>2^332<3^223
2|}}dasKJLFDJHLSKAfhsdklfjdlsa;fjdsafjdsa;fjdsl;fjlsa;fjadskljfdlfjdskfjl;+)2349890432483085439-
a) \(2^{91}\)và \(5^{35}\)
Ta có :
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\)nên \(2^{91}>5^{35}\)
b) \(3^{4000}\)và \(9^{2000}\)
Ta có :
\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)
Vì \(81^{1000}=81^{1000}\)nên \(3^{4000}=9^{2000}\)
\(2^{91}\)và \(5^{35}\)
Ta có :
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192>3125\)nên \(2^{91}>5^{35}\)
\(3^{4000}\)và \(9^{2000}\)
Ta có :
\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)
Vì \(81=81\)nên \(3^{4000}=9^{2000}\)
bài 4 : c1 \(3^{4000}\)và \(9^{2000}\)
\(\Leftrightarrow9^{2000}\Leftrightarrow\left(3^2\right)^2^{000}\Leftrightarrow3^{4000}\)
vì \(3^{4000}=3^{4000}\Leftrightarrow3^{4000}=9^{2000}\)
c2
ta có
\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)
vì \(81^{1000}=81^{1000}\Leftrightarrow3^{4000}=9^{2000}\)
bài 5
\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}>3^{222}=\left(3^2\right)^{111}=9^{111}\)
vì \(8^{111}< 9^{111}\Leftrightarrow2^{332}< 3^{223}\)
3) M = 22010 - (22009 + 22008 + .... + 21 + 20)
Đặt N = 22009 + 22008 + .... + 21 + 20
=> 2N = 22010 + 22009 + .... + 22 + 21
=> 2N - N = (22010 + 22009 + .... + 22 + 21) - (22009 + 22008 + .... + 21 + 20)
=> N = 22010 - 1
Khi đó M = 22010 - (22010 - 1) = 1
4) C1 Ta có 34000 = (34)1000 = 811000 = (92)1000 = 92000
34000 = 92000
C2 Ta có : 34000 = (34)1000 = 811000 (1)
Lại có 92000 = (92)1000 = 811000 (2)
Từ (1) (2) => 34000 = 92000
5 Ta có 2332 < 2333 = (23)111 = 8111 < 9111 = (32)111 = 3222 < 3223
=> 2332 < 3223
2) Ta có n150 < 5225
=> (n5)75 < (53)75
=> n5 < 53
=> n5 < 125
Vì n là số nguyên lớn nhất => n = 2
Giải:
a) \(\dfrac{120^3}{40^3}=\left(\dfrac{120}{40}\right)^3=30^3=2700\)
b) \(\dfrac{390^4}{130^4}=\left(\dfrac{390}{130}\right)^4=30^4=810000\)
c) \(\dfrac{3^2}{\left(0,375\right)^2}=\left(\dfrac{3}{0,375}\right)^2=8^2=64\)
Đáp số: a) 2700; b) 810000; c) 64.
Chúc bạn học tốt!!!
1. sai dấu nhé
2.a, \(\frac{45^{10}.5^{20}}{75^{15}}=\frac{\left(3^2.5\right)^{10}.5^{20}}{\left(5^2.3\right)^{15}}=\frac{3^{20}.5^{30}}{5^{30}.3^{15}}=3^5=243\)
b, \(\frac{\left(0,8\right)^5}{\left(0,4\right)^6}=\frac{\left(\frac{4}{5}\right)^5}{\left(\frac{2}{5}\right)^6}=\frac{\left(\frac{2}{5}\cdot2\right)^5}{\left(\frac{2}{5}\right)^6}=\frac{\left(\frac{2}{5}\right)^5\cdot2^5}{\left(\frac{2}{5}\right)^5\cdot\frac{2}{5}}=2^5\div\frac{2}{5}=32\cdot\frac{5}{2}=80\)
c, \(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}=\frac{2^{15}.3^2}{2^{15}}=3^2=9\)
1.Tính
(0,25)4.1024=(1/4)4.1024=4
2.So sánh
291=(213)7=81927
535=(55)7=31257
Mà 8192>3125=> 81927>31257
=> 291>535
3. Tìm giá trị biểu thức
a) \(\dfrac{45^{10^{ }}.5^{20^{ }}}{75^{15}}=\dfrac{\left(3^{2^{ }}.5\right)^{10^{ }}.5^{20}}{^{ }\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{30}}{3^{15}.5^{30}}=3^5=243\)
b)\(\dfrac{\left(0,8\right)^5}{\left(0,4\right)^6}=\dfrac{\left(2.0,4\right)^5}{0,4.0,4^5}=\dfrac{2^{5^{ }}.0,4^5}{0,4.0,4^5}=\dfrac{2^5}{0,4}=80\)
c)\(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15^{ }}.3^8}{3^6.2^6.2^9}=\dfrac{2^{15}.3^8}{3^6.2^{15}}=3^2=9\)
Tic hộ tui đi !!! chúc bn hok tôts
a) \(\left(\dfrac{1}{5}\right)^5.5^5=\left(\dfrac{1}{5}.5\right)^5=1^5=1\)
b) \(\left(0,125\right)^3.512=\left(0,512\right)^3.8^3=\left(0,512.8\right)^3=1^3=1\)
c) \(\left(0,25\right)^4.1024=\left[\left(0,25\right)^2\right]^2.32^2=\left(\dfrac{1}{6}\right)^2.32^2=\left(\dfrac{1}{6}.32\right)^2=2^2=4\)
d) \(\dfrac{120^3}{40^3}=\left(\dfrac{120}{40}\right)^3=3^3=64\)
e) \(\dfrac{390^4}{130^4}=\left(\dfrac{390}{130}\right)^4=3^4=81\)
g) \(\dfrac{3^2}{\left(0,375\right)^2}=\left(\dfrac{3}{0,375}\right)^3=8^3=512\)
\(B=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{98}+\left(\dfrac{1}{2}\right)^{99}\)
\(\Rightarrow2B=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+\left(\dfrac{1}{2}\right)^4+...+\left(\dfrac{1}{2}\right)^{97}+\left(\dfrac{1}{2}\right)^{98}\)
\(\Rightarrow2B-B=1-\left(\dfrac{1}{2}\right)^{99}\)
\(B=1-\left(\dfrac{1}{2}\right)^{99}\)
\(2,\)
\(a,\dfrac{45^{10}.2^{10}}{75^{15}}\)
\(=\dfrac{5^{10}.9^{10}.2^{10}}{25^{15}.3^{15}}\)
\(=\dfrac{5^{10}.3^{20}.2^{10}}{5^{30}.3^{15}}\)
\(=\dfrac{5^{10}.3^{15}.\left(3^5.2^{10}\right)}{5^{10}.3^{15}.\left(5^{20}\right)}\)
\(=\dfrac{3^5.2^{10}}{5^{20}}\)
\(b,\dfrac{2^{15}.9^4}{6^3.8^3}\)
\(=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)
\(c,\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{4^{10}.2^{10}+4^{10}}{4^4.2^4+4^4.4^7}=\dfrac{4^4.\left(4^6.2^{10}+4^6\right)}{4^4.\left(2^4+4^7\right)}\)
\(=\dfrac{4^{11}+4^6}{4^8.4^7}=\dfrac{4^6.\left(4^5+1\right)}{4^6.\left(4^2-4\right)}=\dfrac{1024+1}{16-4}=\dfrac{1025}{12}\)
\(d,\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)
\(3,\)
\(a,\left(2x+4\right)^2=\dfrac{1}{4}\)
\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2=\left(\dfrac{-1}{2}\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x+4=\dfrac{1}{2}\\2x+4=\dfrac{-1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-4=\dfrac{-7}{2}\\2x=\dfrac{-1}{2}-4=\dfrac{-9}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-7}{4}\\x=\dfrac{-9}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{-7}{4};\dfrac{-9}{4}\right\}\)
\(b,\left(2x-3\right)^2=36\)
\(\left(2x-3\right)^2=6^2=\left(-6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=6+3=9\\2x=-6+3=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{9}{2};\dfrac{-3}{2}\right\}\)
\(c,5^{x+2}=628\)
\(5^{x+2}=5^4\)
\(\Rightarrow x+2=4\)
\(\Rightarrow x=4-2=2\)
Vậy \(x=2\)
\(d,\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)
\(\Rightarrow\left(x-1\right)^{x+2}.\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
Vậy \(x\in\left\{0;1;2\right\}\)
Bài 1:
B= \(\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^{99}\)
2B= \(2.[\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{99}]\)
2B= \(1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^{98}\)
⇒2B-B= \(1-\left(\dfrac{1}{2}\right)^{99}\)
B= 1
Vậy B=1
Bài 2:
a, \(\dfrac{45^{10}.2^{10}}{75^{15}}\)= \(\dfrac{\left(3^2.5\right)^{10}.2^{10}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.2^{10}}{3^{15}.5^{30}}=\dfrac{3^5.2^{10}}{5^{20}}\)
b, \(\dfrac{2^{15}.9^4}{6^3.8^3}=\dfrac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^3.\left(2^3\right)^3}=\dfrac{2^{15}.3^8}{2^3.3^3.2^9}=\dfrac{2^{15}.3^8}{2^{12}.3^3}=2^3.3^5\)
c,\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2.4\right)^{10}+4^{10}}{\left(2.4\right)^4+4^{11}}=\dfrac{2^{10}.4^{10}+4^{10}}{2^4.4^4+4^{11}}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6+4^6.4^5}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(4^5+1\right)}=\dfrac{4^{10}.\left(2^{10}+1\right)}{4^6.\left(2^{10}+1\right)}=4^4=256\)
d, \(\dfrac{81^{11}.3^{17}}{27^{10}.9^{15}}=\dfrac{\left(3^4\right)^{11}.3^{17}}{\left(3^3\right)^{10}.\left(3^2\right)^{15}}=\dfrac{3^{44}.3^{17}}{3^{30}.3^{30}}=\dfrac{3^{61}}{3^{60}}=3\)
Bài 3:
a, \(\left(2x+4\right)^2=\dfrac{1}{4}\)
\(\left(2x+4\right)^2=\left(\dfrac{1}{2}\right)^2\)
\(2x+4=\dfrac{1}{2}\)
\(2x=\dfrac{1}{2}-4\)
\(2x=-\dfrac{7}{2}\)
\(x=-\dfrac{7}{2}:2\)
\(x=-\dfrac{7}{2}.\dfrac{1}{2}\)
\(x=-\dfrac{7}{4}\)
b, \(\left(2x-3\right)^2=36\)
\(\left(2x-3\right)^2=6^2\)
\(2x-3=6\)
\(2x=9\)
\(x=\dfrac{9}{2}\)
c, \(5^{x+2}=625\)
\(5^{x+2}=5^4\)
\(x+2=4\)
\(x=2\)
Bài 1 :
a) Ta có :
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\Leftrightarrow2^{225}< 3^{150}\)
b) Ta có :
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\Leftrightarrow2^{91}>5^{35}\)
c)Ta có :
\(3^{4000}=\left(3^4\right)^{1000}=81^{1000}\)
\(9^{2000}=\left(9^2\right)^{1000}=81^{1000}\)
Vì \(81^{1000}=81^{1000}\Leftrightarrow3^{4000}=9^{2000}\)
d) Ta có :
\(2^{332}< 2^{333}=\left(2^3\right)^{111}=8^{111}\)
\(3^{223}< 3^{222}=\left(3^2\right)^{111}=9^{111}\)
Mà \(8^{111}< 9^{111}\Leftrightarrow2^{332}< 3^{223}\)
Bài 2 :
a) \(\dfrac{120^3}{40^3}=\left(\dfrac{120}{4}\right)^3=3^3=27\)
b) \(\dfrac{390^4}{130^4}=\left(\dfrac{390}{130}\right)^4=3^4=81\)
c) \(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(3^2.5\right)^{10}.5^{20}}{\left(3.5^2\right)^{15}}=\dfrac{3^{20}.5^{10}.5^{20}}{3^{15}.5^{30}}=3^5=243\)
Bài 1:
a.Ta có :
\(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{150}=\left(3^2\right)^{75}=9^{75}\)
Vì \(8^{75}< 9^{75}\) nên \(2^{225}< 3^{150}\)
b. Ta có :
\(2^{91}=\left(2^{13}\right)^7=8192^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\)
Vì \(8192^7>3125^7\) nên \(2^{91}>5^{35}\)
c. Ta có :
\(3^{4000}=\left(3^2\right)^{2000}=9^{2000}\)
Vì \(9^{2000}=9^{2000}\) nên \(3^{4000}=9^{2000}\)
Bài 2:
a. \(\dfrac{120^3}{30^3}=\dfrac{\left(30.4\right)^3}{30^3}=\dfrac{30^3.4^3}{30^3}=4^3=64\)
b. \(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(5.3^2\right)^{10}.5^{20}}{\left(3.5^2\right)^{15}}=\dfrac{5^{10}.3^{20}.5^{20}}{3^{15}.5^{30}}=\dfrac{5^{30}.3^{20}}{3^{15}.5^{30}}=3^5=243\)
c. \(\dfrac{390^4}{130^4}=\dfrac{\left(130.3\right)^4}{130^4}=\dfrac{130^4.3^4}{130^4}=3^4=81\)