\(x^5-x^4-1\)

b, \(\left(x^2+x\rig...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

a, \(x^5-x^4-1\\ =x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\\ =x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\\ =\left(x^2-x+1\right)\left(x^3-x-1\right)\)

b, \(\left(x^2+x\right)^2+4x^2+4x-12\\ =\left(x^2+x\right)^2+4\left(x^2+x\right)-12\\ =\left(x^2+x\right)^2-2\left(x^2+x\right)+6\left(x^2+x\right)-12\\ =\left(x^2+x-2\right)\left(x^2+x\right)+6\left(x^2+x-2\right)\\ =\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)

c. Đặt x2+x+1=t

Khi đó ta có t(t+1)-12=t2+t-12=t2-3t+4t-12=t(t-3)+4(t-3)=(t-3)(t+4)

Thay t=x2+x+1 t đc (x2+x+1-3)(x2+x+1+4)=(x2+x-2)(x2+x+5)

=(x-1)(x+2)(x2+x+5)

27 tháng 7 2020

a) \(\left(1+x\right)^2+\left(1-x\right)^2\) 

\(=1+2x+x^2+1-2x+x^2\)

\(=2x^2+2\)

b) \(\left(x+2\right)^2+\left(1+x\right)\left(1-x\right)\)

\(=x^2+4x+4+1-x^2\)

\(=4x+5\)

c) \(\left(x-3\right)^2+3\left(x+1\right)^2\)

\(=x^2-6x+9+3x^2+6x+3\)

\(=4x^2+12\)

d)\(\left(2+3x\right)\left(3x-2\right)-\left(3x+1\right)^2\)

\(=9x^2-4-9x^2-6x-1\)

\(=-6x-5\)

e) \(\left(x+5\right)\left(x-2\right)-\left(x+2\right)^2\)

\(=x^2-2x+5x-10-x^2-4x-4\)

\(=-x-14\)

f) \(\left(x+3\right)\left(2x-5\right)-2\left(1+x\right)^2\)

\(=2x^2-5x+6x-15-2-4x-2x^2\)

\(=-3x-17\)

g) \(\left(4x-1\right)\left(4x+1\right)-4\left(1-2x\right)^2\)

\(=16x^2-1-4+16x-16x^2\)

\(=16x-5\)

#Học tốt!

4 tháng 10 2017

a) \(\left(x^2+x\right)^2-14\left(x^2+x\right)+24\)

Đặt \(x^2+x=y\) ta được:

\(y^2-14y+24\)

\(=x\left(y-12\right)-2\left(y-12\right)\)

\(=\left(y-2\right)\left(y-12\right)\)

Thay ngược trở lại:

\(\left(x^2+x-2\right)\left(x^2+x-12\right)\)

\(=\left(x-1\right)\left(x+2\right)\left(x-3\right)\left(x+4\right)\)

d) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+10\right)+1\)

Đặt \(x^2+5x+4=a\) được:

\(a\left(a+6\right)+1\)

\(=a^2+6a+1\)

\(=a^2+2.a.3+3^2-8\)

\(=\left(a+3\right)^2-\left(\sqrt{8}\right)^2\)

\(=\left(a+3-\sqrt{8}\right)\left(a+3+\sqrt{8}\right)\)

Mấy câu kia tương tự.

4 tháng 10 2017

thanks

27 tháng 9 2019

nhân ra hết là đc

27 tháng 9 2019

kệ chẳng quan tâm

\(3x^4-4x^3+2x\left(x^3-2x^2+7x\right)\)

\(=3x^4-4x^3+2x^4-4x^3+14x^2\)

\(=5x^4-8x^3+14x^2\)

3x4 - 4x3 + 2x(x3 - 2x2 + 7x )

= 3x4 - 4x3 + 2x4 _ 4x3 + 14x2

= 5x4 - 8x3 + 14x2

6 tháng 4 2020

câu a, b, c dễ mà. Bạn áp dụng 7 hằng đẳng thúc là làm đc thoii!!

vd: a) \(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)

\(\Rightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=\left(3x+2\right)\left(x-1\right)\left(x+1\right)\)

\(\Rightarrow\left(3x-2\right)\left(3x+2\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Rightarrow\left(3x+2\right)\left(x+1\right)[\left(3x-2\right)-\left(x-1\right)]=0\)

\(\Rightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\) (bạn phá ngoặc ra rồi tính là ra bước này)

\(\Leftrightarrow3x+2=0\) hoặc \(x+1=0\) hoặc \(2x-1=0\) ( đến đây bạn chia làm 3 trường hợp r tự tính nhé)

Chúc bạn học tốt!!

NV
6 tháng 4 2020

d/

\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^3+1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

e/

\(\Leftrightarrow x^3+x^2-6x-x^2-x+6=0\)

\(\Leftrightarrow x\left(x^2+x-6\right)-\left(x^2+x-6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x-6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)

27 tháng 7 2018

\(B=x^2-6x+y^2-2y+12=\left(x^2-6x+9\right)\left(y^2-2y+1\right)+2\)
\(B=\left(x-3\right)^2+\left(y-1\right)^2+2\text{ }\)
Ta thấy B lớn hơn hoặc bằng 2 suy ra GTNN của B là 2 
Dấu = xảy ra khi x=3; y=1
\(C=2x^2-6x=\left(2x^2-6x+4,5\right)-4,5=2\left(x^2-3x+2,25\right)-4,5\)
\(C=2\left(x-1,5\right)^2-4,5\)
Ta thấy C luôn luôn lớn hơn hoặc bằng -4,5 nên GTNN của C là -4,5 
Dấu = xảy ra khi x=1,5
Tối mình full cho còn giờ mình đi đá bóng đây

27 tháng 7 2018

1) \(D=\frac{2016}{-4x^2+4x-5}\). Để D đạt giá trị nhỏ nhất suy ra \(-4x^2+4x-5\)đạt giá trị lớn nhất. 
Ta có \(-4x^2+4x-5=-4x^2+4x-1-4=\left(-4x^2+4x-1\right)-4\)
\(-4\left(x^2-x+\frac{1}{4}\right)-4=-4\left(x-\frac{1}{2}\right)^2-4\).
Ta Thấy:\(-4\left(x-\frac{1}{2}\right)^2\) bé hơn hoặc bằng 0 nên \(-4\left(x-\frac{1}{2}\right)^2-4\)bé hơn hoặc bằng -4
nên ..... bạn tự kết luận