Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^2 + b^2 + c^2= ab + bc + ca
2 ( a^2 + b^2 + c^2 ) = 2 ( ab + bc + ca)
2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca
a^2 + a^2 + b^2 + b^2 + c^2+ c^2 – 2ab – 2bc – 2ca = 0
a^2 + b^2 – 2ab + b^2 + c^2 – 2bc + c² + a² – 2ca = 0
(a^2 + b^2 – 2ab) + (b^2 + c^2 – 2bc) + (c^2 + a^2 – 2ca) = 0
(a – b)^2 + (b – c)^2 + (c – a)^2 = 0
Vì (a-b)^2 lớn hơn hoặc bằng 0 với mọi a và b
(b-c)^2 lớn hơn hoặc bằng 0 với mọi c và b
(c-a)^2 lớn hơn hoặc bằng 0 với mọi a và c
=> (a-b)^2 =0 ; (b-c)^2=0 ; (c-a)^2=0
=> a=b ; b=c ; c=a
=>a=b=c
a) Ta có: \(2018^n-1964^n⋮3\)
\(2032^n-1984^n⋮3\)
nên An chia hết cho 3
Mà \(2018^n-1984^n⋮17\)
\(2032^n-1964^n⋮17\)
nên An chia hết cho 17
Vậy A chia hết cho 51
b) Ta có: An đồng dư 3^n +2^n-2.4^n (mod5)
và An đồng dư 2^n + 7^n -2^n-4^n (mod9)
Vậy An chia hết cho 45 khi n có dạng 12k
vì bài dài quá nên mình làm từng bài 1 nhé
1. Ta thấy : \(\frac{1}{n^3}< \frac{1}{n^3-n}=\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)
Do đó :
\(B< \frac{1}{2}.\left[\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]< \frac{1}{2}.\frac{1}{6}=\frac{1}{12}\)
2.
Nhận xét : \(1+\frac{1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)
Do đó :
\(A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.3...\left(n+1\right)}{1.2...n}.\frac{2.3...\left(n+1\right)}{3.4...\left(n+2\right)}=\frac{n+1}{1}.\frac{2}{n+2}< 2\)
Đề câu cuối sai chỗ x phải là n
a)\(-x^2+4x-9=-5-\left(x^2-4x+4\right)=-5-\left(x-2\right)^2\)
(x-2)2\(\ge0\forall x\in R\)
=>-(x-2)2\(\le0\forall x\in R\)
=>-5-(x-2)2\(\le-5\forall x\in R\)(ĐPCM)
b)\(x^2-2x+9=\left(x^2-2x+1\right)+8=\left(x-1\right)^2+8\)
(x-1)2\(\ge0\forall x\in R\)
=>(x-1)2+8\(\ge8\forall x\in R\)(đpcm)
c)11x-7<8x+2
<=>11x-8x<2+7
<=>3x<9
<=>x<3
Mà x nguyên dương=>x={1;2}
d)(n+2)2-(n-3)(n+3)\(\le\)40
<=>n2+4n+4-n2+9\(\le\)40
<=>4n+13\(\le\)40
<=>4n\(\le\)27
<=>n\(\le\)\(\dfrac{27}{4}< 7\)
n là số tự nhiên =>n={0;1;...;6}
Câu 1:
ĐK: $x\neq -1$
PT $\Leftrightarrow (x-\frac{x}{x+1})^2+\frac{2x^2}{x+1}=\frac{5}{4}$
$\Leftrightarrow (\frac{x^2}{x+1})^2+\frac{2x^2}{x+1}=\frac{5}{4}$
Đặt $\frac{x^2}{x+1}=a$ thì pt trở thành:
$a^2+2a=\frac{5}{4}$
$\Leftrightarrow 4a^2+8a-5=0$
$\Leftrightarrow (2a-1)(2a+5)=0$
$\Rightarrow a=\frac{1}{2}$ hoặc $a=\frac{-5}{2}$
Nếu $a=\frac{1}{2}\Leftrightarrow \frac{x^2}{x+1}=\frac{1}{2}$
$\Rightarrow 2x^2=x+1\Leftrightarrow 2x^2-x-1=0\Leftrightarrow (x-1)(2x+1)=0$
$\Rightarrow x=1$ hoặc $x=\frac{-1}{2}$
Nếu $a=\frac{-5}{2}\Leftrightarrow \frac{x^2}{x+1}=\frac{-5}{2}$
$\Rightarrow 2x^2+5x+5=0$
$2(x+\frac{5}{4})^2=-\frac{15}{8}< 0$ (vô lý)
Vậy.......
Câu 2:
Đặt $n^2+5n+12=a^2$ với $a\in\mathbb{N}$
$\Leftrightarrow 4n^2+20n+48=4a^2$
$\Leftrightarrow (2n+5)^2+23=(2a)^2$
$\Leftrightarrow 23=(2a-2n-5)(2a+2n+5)$
Vì $2n+2n+5\geq 5$ với mọi số tự nhiên $a,n$ nên:
$2a-2n-5=1; 2a+2n+5=23$
$\Rightarrow n=3$