\(a^3+b^3+c^3-3abc\)

b) 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2016

a) x8+x4+1 = (x8+x7+x6) +(-x7-x6-x5)+(x5+x4+x3)+(-x3-x2-x)+(x2+x+1) = (x2+x+1)(x6-x5+x3-x+1)

b) x5+x4+1 = x5 +x4+x3-x3-x2-x+x2+x+1=(x2+x+1)(x3-x+1)

tương tự thì c) và d) cx có nhân tử x2+x+1 

e) = x3-x2-5x2+5x+6x+6 = (x-1)(x2-5x+6) = (x-1)(x2-2x-3x+6) = (x-1)(x-2)(x-3)

28 tháng 10 2016

a) Ta có: \(x^8+x^4+1=\left(x^4\right)^2+2.x^4.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow\) Không phân tích được 

DD
27 tháng 5 2021

Bài 1: 

\(a^2\left(b-2c\right)+b^2\left(c-a\right)+2c^2\left(a-b\right)+abc\)

\(=2c^2\left(a-b\right)+a^2b-ab^2+b^2c-a^2c+abc-a^2c\)

\(=2c^2\left(a-b\right)+ab\left(a-b\right)-c\left(a+b\right)\left(a-b\right)-ac\left(a-b\right)\)

\(=\left(a-b\right)\left(2c^2+ab-ac-cb-ac\right)\)

\(=\left(a-b\right)\left(a-c\right)\left(b-2c\right)\)

DD
27 tháng 5 2021

Bài 2: 

\(x^2+3x+1=0\Leftrightarrow x+\frac{1}{x}=-3\)(vì \(x=0\)không là nghiệm) 

Ta có: 

\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right).x.\frac{1}{x}=-3^3-3.\left(-3\right)=-18\)

\(x^4+\frac{1}{x^4}=\left(x^2+\frac{1}{x^2}\right)^2-2=\left[\left(x+\frac{1}{x}\right)^2-2\right]^2-2=47\)

\(\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)=x^7+\frac{1}{x^7}+x+\frac{1}{x}\)

\(\Leftrightarrow x^7+\frac{1}{x^7}=\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)=-18.47-\left(-3\right)=-843\)

16 tháng 7 2019

\(\text{a)}x\sqrt{x}+\sqrt{x}-x-1\)

\(=\left(x\sqrt{x}+\sqrt{x}\right)-\left(x+1\right)\)

\(=\sqrt{x}\left(x+1\right)-\left(x+1\right)\)

\(=\left(x+1\right)\left(\sqrt{x}-1\right)\)

\(\text{b)}\sqrt{ab}+2\sqrt{a}+3\sqrt{b}+6\)

\(=\left(\sqrt{ab}+2\sqrt{a}\right)+\left(3\sqrt{b}+6\right)\)

\(=\sqrt{a}\left(\sqrt{b}+2\right)+3\left(\sqrt{b}+2\right)\)

\(=\left(\sqrt{b}+2\right)\left(\sqrt{a}+3\right)\)

\(\text{c)}\left(1+\sqrt{x}\right)^2-4\sqrt{x}\)

\(=\left(1+\sqrt{x}\right)^2-\left(2\sqrt{\sqrt{x}}\right)^2\)

\(=\left(1+\sqrt{x}+2\sqrt{\sqrt{x}}\right)\left(1+\sqrt{x}-2\sqrt{\sqrt{x}}\right)\)

\(\text{d)}\sqrt{ab}-\sqrt{a}-\sqrt{b}+1\)

\(=\left(\sqrt{ab}-\sqrt{a}\right)-\left(\sqrt{b}-1\right)\)

\(=\sqrt{a}\left(\sqrt{b}-1\right)-\left(\sqrt{b}-1\right)\)

\(=\left(\sqrt{b}-1\right)\left(\sqrt{a}-1\right)\)

\(\text{e)}a+\sqrt{a}+2\sqrt{ab}+2\sqrt{b}\)

\(=\left(a+\sqrt{a}\right)+\left(2\sqrt{ab}+2\sqrt{b}\right)\)

\(=\left[\left(\sqrt{a}\right)^2+\sqrt{a}\right]+\left(2\sqrt{ab}+2\sqrt{b}\right)\)

\(=\sqrt{a}\left(\sqrt{a}+1\right)+2\sqrt{b}\left(\sqrt{a}+1\right)\)

\(=\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\sqrt{b}\right)\)

\(\text{f)}x-2\sqrt{x-1}-a^2\)

\(=\left(\sqrt{x-2}\right)^2\left(\sqrt{\sqrt{x-1}}\right)^2-a^2\)

\(=\left(\sqrt{x-2}\sqrt{\sqrt{x-1}}\right)^2-a^2\)

\(=\left(\sqrt{x-2\sqrt{x-1}}\right)^2-a^2\)

\(=\left(\sqrt{x-2\sqrt{x-1}}+a\right)\left(\sqrt{x-2\sqrt{x-1}}-a\right)\)

Bài 1: Tìm x để căn thức sau có nghĩaa)\(\sqrt{x-3}\)    b) \(\sqrt{-3x}\)    c) \(\sqrt{\frac{5}{x+1}}\)    d) \(\sqrt{\frac{-10}{x^2+1}}\)Bài 2: Tínha) 3\(\sqrt{\left(-3\right)^2}\)    b) -5 \(\sqrt{\left(-2\right)^4}\)     c) \(\sqrt{\sqrt{\left(-10\right)^8}}\)    d) 2\(\sqrt{\left(-3\right)^4}\)\(+\)3\(\sqrt{\left(-2\right)^2}\)Bài 3: Rút gọna)\(\sqrt{\left(2+\sqrt{5}\right)^2}\)   b) \(\sqrt{\left(2-\sqrt{5}\right)^2}\)   c)...
Đọc tiếp

Bài 1: Tìm x để căn thức sau có nghĩa

a)\(\sqrt{x-3}\)    b) \(\sqrt{-3x}\)    c) \(\sqrt{\frac{5}{x+1}}\)    d) \(\sqrt{\frac{-10}{x^2+1}}\)

Bài 2: Tính

a) 3\(\sqrt{\left(-3\right)^2}\)    b) -5 \(\sqrt{\left(-2\right)^4}\)     c) \(\sqrt{\sqrt{\left(-10\right)^8}}\)    d) 2\(\sqrt{\left(-3\right)^4}\)\(+\)3\(\sqrt{\left(-2\right)^2}\)

Bài 3: Rút gọn

a)\(\sqrt{\left(2+\sqrt{5}\right)^2}\)   b) \(\sqrt{\left(2-\sqrt{5}\right)^2}\)   c) 2\(\sqrt{7}\)+\(\sqrt{\left(2-\sqrt{7}\right)^2}\) d) 3\(\sqrt{\left(x-5\right)^2}\) với x < 5

e)\(\sqrt{\frac{9+4\sqrt{5}}{\left(\sqrt{5+2}\right)^2}}\)     f)\(\sqrt{\frac{\sqrt{9-4\sqrt{5}}-\sqrt{5}}{2}}\)+ 5

Bài 4: Tìm x biết:

a)\(\sqrt{4x^2}\)= 8     b) \(\sqrt{1+4x+4x^2}\)\(=\)\(7\)    c)\(\sqrt{x^4}\)\(=\)\(3\)

Bài 5: Phân tích đa thức thành nhân tử

a) x2 -2      b) x2\(-\)2\(\sqrt{3}\)\(\times\)x \(+\)3

Bài 6: Chứng minh a\(\in\)z , b\(\in\)z

A=\(\sqrt{A-2\sqrt{5}}\)\(-\)\(\sqrt{6+2\sqrt{5}}\)   B=\(\frac{\sqrt{3-2\sqrt{2}}}{17-12\sqrt{2}}\)\(-\)\(\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)

1
5 tháng 8 2017

giúp mik vs thứ 2 mik nộp rr huhu

16 tháng 8 2021

b4 : 

\(a,x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(b,x-5=\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x}+\sqrt{5}\right)\)

\(c,x+2\sqrt{xy}+y=\left(\sqrt{x}+\sqrt{y}\right)^2\)

\(d,x-4\sqrt{x}\sqrt{y}+4y=\left(\sqrt{x}-2\sqrt{y}\right)^2\)

b5:

\(a,ĐK:x\ge1\)

\(\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}-\frac{4}{5}\sqrt{25\left(x-1\right)}=1\)

\(\Leftrightarrow3\sqrt{x-1}+2\sqrt{x-1}-4\sqrt{x-1}=1\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

\(b,ĐK:x\ge5\)

\(\frac{1}{3}\sqrt{9\left(x-5\right)}+\frac{1}{2}\sqrt{4\left(x-5\right)}-\frac{7}{5}\sqrt{25\left(x-5\right)}=2\)

\(\Leftrightarrow\sqrt{x-5}+\sqrt{x-5}-7\sqrt{x-5}=2\)

\(\Leftrightarrow-5\sqrt{x-5}=2\)

\(\Leftrightarrow\sqrt{x-5}=-\frac{2}{5}\left(voli\right)\)

\(c,ĐK:x>0\)

\(\sqrt{x}+\frac{9}{\sqrt{x}}=6\)

\(\Leftrightarrow x+9=6\sqrt{x}\)

\(\Leftrightarrow x-6\sqrt{x}+9=0\)

\(\Leftrightarrow\left(\sqrt{x}-3\right)^2=0\)

\(\Leftrightarrow x=9\left(tm\right)\)

21 tháng 7 2016

a, \(x-\sqrt{x}\)\(\sqrt{x}.\left(\sqrt{x}-1\right)\)

b, 3x+6\(\sqrt{x}\)\(\sqrt{x}.\left(3\sqrt{x}+6\right)\)

c, x+2\(\sqrt{x}+1\)\(\left(\sqrt{x}\right)^2+2\sqrt{x}+1=\left(\sqrt{x}+1\right)^2\)

d, \(3x-5\sqrt{x}+2=3x-3\sqrt{x}-2\sqrt{x}+2\)

=\(3\sqrt{x}.\left(\sqrt{x}-1\right)-2.\left(\sqrt{x}-1\right)\)

=\(\left(3\sqrt{x}-2\right).\left(\sqrt{x}-1\right)\)