Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x-1)(2x+5)
b) (x+1)(x-5)
c) [(x+1)^2](x^2+x+1)
d) (x-1)(x^3-x-1)
e) (x+y)(x-y-1)
a) 2x2 + 3x - 5 = 2x2 + 5x - 2x - 5 = x(2x + 5) - (2x + 5) = (x - 1)(2x + 5)
b) x2 - 4x - 5 = x2 - 5x + x - 5 = x(x - 5) + (x - 5) = (x + 1)(x - 5)
c) x4 + x3 + x + 1 = x3(x + 1) + (x + 1) = (x + 1)(x3 + 1) = (x + 1)2(x2 - x + 1)
d) x4 - x3 - x2 + 1 = x3(x - 1) - (x - 1)(x + 1) = (x - 1)(x3 - x - 1)
e) -x - y2 + x2 - y = -(x + y) + (x - y)(x + y) = (-1 + x - y)(x + y)
Bài làm:
a) \(2x^2+7x+5=\left(2x^2+2x\right)+\left(5x+5\right)=2x\left(x+1\right)+5\left(x+1\right)\)
\(=\left(2x+5\right)\left(x+1\right)\)
b) \(x^3-2x-4=\left(x^3-2x^2\right)+\left(2x^2-4x\right)+\left(2x-4\right)\)
\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)=\left(x-2\right)\left(x^2+2x+2\right)\)
c) \(x^2+4x+3=\left(x^2+x\right)+\left(3x+3\right)=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
2x2 + 7x + 5 = 2x2 + 2x + 5x + 5 = ( 2x2 + 2x ) + ( 5x + 5 ) = 2x( x + 1 ) + 5( x + 1 ) = ( 2x + 5 )( x + 1 )
x2 + 4x + 3 = x2 + x + 3x + 3 = ( x2 + x ) + ( 3x + 3 ) = x( x + 1 ) + 3( x + 1 ) = ( x + 3 )( x + 1 )
a,a) M = 7x - 7y + 4ax - 4ay - 5
=7(x-y)+4a(x-y)-5
= 7.0+4a.0-5
=0+0-5
= -5
B,b) N = x( x2+ y2) - y ( x2+ y2) + 3
= x2+y2.(x-y)+3
=x2+y2.0+3
=0+3=3
1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)
Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)
Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)
\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)
1. \(A=x^{15}+3x^{14}+5\)
\(A=x^{14}\left(x+3\right)+5\)
\(A=x^{14}+5\)
2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)
\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)
\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)
\(B=1^{2007}=1\)
3. \(C=21x^4+12x^3-3x^2+24x+15\)
\(C=3x\left(7x^2+4x^2-x+8+5\right)\)
\(C=3x\left(0+5\right)\)
\(C=15x\)
4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)
\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)
\(D=4x.0+2007\)
\(D=2007\)
Bài 1 :
a)3x+6y
=3(x+y)
b)\(x^2-y^2-7x+7y\)
\(=\left(x-y\right)\left(x+y\right)-7\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-7\right)\)
câu c sai đề à
d)\(4x^2-4x-15\)
\(=\left(4x^2-4x+1\right)-16\)
\(=\left(2x-1\right)^2-16\)
\(=\left(2x-1-4\right)\left(2x-1+4\right)\)
\(=\left(2x-5\right)\left(2x+3\right)\)
a)3x+6y = 3( x + 2y )
b)x2−y2−7x+7y = x( x - 7 ) - y ( y - 7 )
= ( x - y ) ( x - 7 )
c) 3b−x2+4xy−4y2
= 3b - ( x\(^2\) - 4xy + 4y\(^2\)) = 3b - ( x - 2y )\(^2\) câu này hình như sai chỗ 3b phải ko
d)4x2−4x−15 = 4x\(^2\) - 10x + 6x -15 =0
= 2x ( 2x +3 ) - 5 ( 2x + 3 ) = 0
= ( 2x - 5 )( 2x + 3)
4x2−4x−15