K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 9 2019

Bài 1:

\(\left(x+y\right)^3-\left(x-y\right)^3=\left(x+y-x+y\right)\left(\left(x+y\right)^2+\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right)\)

\(=2y\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)=2y\left(3x^2+y^2\right)\)

Bài 2:

\(\frac{4}{9}-25x^2=0\Leftrightarrow\left(\frac{2}{3}-5x\right)\left(\frac{2}{3}+5x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}5x=\frac{2}{3}\\5x=-\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{2}{15}\\x=-\frac{2}{15}\end{matrix}\right.\)

\(x^2-x+\frac{1}{4}=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)

Bài 3:

\(A=17.91,5+17.8,5=17\left(91,5+8,5\right)=17.100=1700\)

\(B=\left(2016-16\right)\left(2016+16\right)=2000.2032=4064000\)

\(C=2001\left(2001-1\right)+2999\left(2001-1\right)\)

\(=2001.2000+2999.2000\)

\(=2000\left(2001+2999\right)\)

\(=2000.5000=10000000\)

21 tháng 9 2019

Bài 1: Phân tích đa thức thành nhân tử:

a) (x + y)3 - (x - y)3

= ( x + y - x - y )[( x + y ) 2 - ( x + y )( x - y ) + ( x - y )2 ]

= 0 [( x + y ) 2 - ( x + y )( x - y ) + ( x - y )2 ]

= 0

Bài 2: Tìm x, biết:

a) \(\frac{4}{9}\) - 25x2 = 0

( \(\frac{2}{3}\))2 - ( 5x )2 = 0

( \(\frac{2}{3}\)+ 5x )( \(\frac{2}{3}\)- 5x ) = 0

\(\frac{2}{3}\)+ 5x = 0 ----> 5x = -\(\frac{2}{3}\) ---> x = -\(\frac{2}{15}\)

\(\frac{2}{3}\)​- 5x = 0 --> 5x = \(\frac{2}{3}\)​ --> x = \(\frac{2}{15}\)

b) x2 - x + \(\frac{1}{4}\) = 0

x2 - 2. x . \(\frac{1}{2}\) + \(\left(\frac{1}{2}\right)\)2 = 0

( x - \(\frac{1}{2}\))2 = 0

x - \(\frac{1}{2}\) = 0

x = \(\frac{1}{2}\)

Bài 3: Tính nhanh giá trị các biểu thức sau:

a) 17.91,5 + 170.0,85

= 17.91,5 + 17.10.0,85

= 17.91,5 + 17.8,5

= 17 ( 91,5 + 8,5 )

= 170

b) 20162 - 162

= ( 2016 + 16 )( 2016 - 16 ).

= 2032.2000

= 4064000

c) x(x - 1) - y (1 - x) tại x = 2001 và y = 2999

x(x - 1) - y (1 - x)

= x(x - 1) + y ( x - 1 )

= ( x + y )( x - 1 )

Thay x = 2001 và y = 2999

( 2001 + 2999 )( 2001 - 1 )

= 5000. 2000

= 10000000

26 tháng 8 2016

a)x2(x+1)+2x(x+1)=0

=>(x2+2x)(x+1)=0

=>x(x+2)(x+1)=0

=>x=0 hoặc x+2=0 hoặc x+1=0

=>x=0 hoặc x=-2 hoặc x=-1

 b)x(3x-2)-5(2-3x)=0

=>x(3x-2)+5(3x-2)=0

=>(x+5)(3x-2)

=>x+5=0 hoặc 3x-1=0

=>x=-5 hoặc \(x=\frac{2}{3}\)

c)\(\frac{4}{9}-25x^2=0\)

\(\Rightarrow\left(\frac{2}{3}\right)^2-\left(5x\right)^2=0\)

\(\Rightarrow\left(\frac{2}{3}-5x\right)\left(\frac{2}{3}+5x\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}\frac{2}{3}-5x=0\\\frac{2}{3}+5x=0\end{array}\right.\)

\(\Rightarrow x=\pm\frac{2}{15}\)

d)\(x^2-x+\frac{1}{4}=0\)

\(\Rightarrow\frac{4x^2}{4}-\frac{4x}{4}+\frac{1}{4}=0\)

\(\Rightarrow\frac{4x^2-4x+1}{4}=0\)

\(\Rightarrow4x^2-4x+1=0\)

\(\Rightarrow\left(2x-1\right)^2=0\)

\(\Rightarrow x=\frac{1}{2}\)

 

 

26 tháng 8 2016

a)17*91,5+170*0,85

 =17*91,5+17*10*0,85

=17*91,5+17*8,5

=17*(91,5+8,5)

=17*100

=1700

b)20162-162

=(2016+16)(2016-16)

=2032*2000

=4064000

c)x(x-1)-y(1-x)

=x(x-1)+y(x-1)

=(x-1)(x+y)

Thay x=2001 và y=2999 đc: 

=(2001-1)(2001+2999)

=2000*5000

=10 000 000

 

3 tháng 4 2019

a) \(x^3+y^3+z^3-3xyz\)

\(=x^3+3x^2y+3xy^2+y^3+z^3-3x^2y-3xy^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

5 tháng 4 2019

câu b đâu

3 tháng 12 2017

Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)

\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)

Vậy \(x=y=\frac{1}{2}\)

ĐỀ KIỂM TRA HKI:NĂM HỌC:2016_2017MÔN:TOÁNBài 1:Thực hiện phép tínha) 3x2 (x3 + 3x2 - 2x + 1) - 3x3b) (x - 4)(2x + 3)Bài 2:Phân tích các đa thức sau thành nhân tửa) 5x3 + 10x2 + 5xb) x(2x - 7) - 6x + 21c) x2 + 2xz - 49 + z2d) x2 + 10x + 21Bài 3:Tìm xa) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15b) 3x(x - 5) - 6084(x - 5) = 0Bài 4:a) Sắp xếp đa thức theo lũy thừa giảm dần của biến rồi làm tính chia:(2x4 + 15x2 - 13x3 - 3 + 11x) : (x2 - 4x - 3)b)...
Đọc tiếp

ĐỀ KIỂM TRA HKI:

NĂM HỌC:2016_2017

MÔN:TOÁN

Bài 1:Thực hiện phép tính

a) 3x2 (x3 + 3x2 - 2x + 1) - 3x3

b) (x - 4)(2x + 3)

Bài 2:Phân tích các đa thức sau thành nhân tử

a) 5x3 + 10x2 + 5x

b) x(2x - 7) - 6x + 21

c) x2 + 2xz - 49 + z2

d) x2 + 10x + 21

Bài 3:Tìm x

a) (x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15

b) 3x(x - 5) - 6084(x - 5) = 0

Bài 4:

a) Sắp xếp đa thức theo lũy thừa giảm dần của biến rồi làm tính chia:

(2x4 + 15x2 - 13x3 - 3 + 11x) : (x2 - 4x - 3)

b) Tính:

\(\frac{x+2}{x+3}\)+\(\frac{1-x}{x+3}\) - \(\frac{6x}{\left(x-3\right)\left(x+3\right)}\)

c) Chứng minh biểu thức sau không phụ thuộc vào biến x và y:

\(\frac{y}{x-y}\) - \(\frac{x^3-xy^2}{x^2+y^2}\)\(\left[\frac{x}{\left(x-y\right)^2}-\frac{y}{x^2-y^2}\right]\)

Bài 5:

Cho hình bình hành ABCD có BC =2AB và Â=600 .Gọi E,F theo thứ tự là trung điểm của BC và AD. Gọi I là điểm đối xứng với A qua B.

a) Tứ giác ABEF là hình gì ? Vì sao ?

b) Chứng minh tam giác ADI là tam giác đều .

c) Tứ giác AIEF là hình gì ? Vì sao ?

d) Tứ giác BICD là hình gì ? Vì sao ?

...............................................................HẾT.............................................................

 

3
20 tháng 12 2016

bạn à. ko có bài 1 điểm à

21 tháng 12 2016

công nhận chẳng thấy bài 1đ đâu.

3 tháng 4 2017

c) Ta có a + b > 1 > 0 (1)

Bình phương 2 vế: \(\left(a+b\right)^2>1\) \(\Leftrightarrow\) \(a^2+2ab+b^2>1\) (2)

Mặt khác \(\left(a-b\right)^2\ge0\) \(\Rightarrow\) \(a^2-2ab+b^2\ge0\) (3)

Cộng từng vế của (2) và (3): \(2\left(a^2+b^2\right)>1\) \(\Rightarrow\) \(a^2+b^2>\frac{1}{2}\) (4)

Bình phương 2 vế của (4):  \(a^4+2a^2b^2+b^4>\frac{1}{4}\) (5)

Mặt khác  \(\left(a^2-b^2\right)^2\ge0\) \(\Rightarrow\) \(a^4-2a^2b^2+b^4\ge0\) (6)

Cộng từng vế của (5) và (6):  \(2\left(a^4+b^4\right)>\frac{1}{4}\) \(\Rightarrow\) \(a^4+b^4>\frac{1}{8}\) (đpcm).

3 tháng 4 2017

1/ Áp dụng hẳng đẳng thức \(\left(a-b\right)\left(a+b\right)=a^2-b^2\) là ra bạn nhé

\(A=\left[\left(3^2-1\right)\left(3^2+1\right)\right]\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left[\left(3^4-1\right)\left(3^4+1\right)\right]\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left[\left(3^8-1\right)\left(3^8+1\right)\right]\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(=\left[\left(3^{16}-1\right)\left(3^{16}+1\right)\right]\left(3^{32}+1\right)\)

\(=\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(=3^{64}-1\)

19 tháng 9 2017

2.a là x=0 , x=-1, x=-2
2.b là x=2/3 , x=-5

20 tháng 9 2017

Trả lời tội ghê đó bạn nhưng mk gửi một bài mà sao bạn trả lời một câu vậy bạn nhưng dù sao vẫn cảm on nha