Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
Ta có: (10a + 5)2 = (10a)2 + 2 .10a . 5 + 52
= 100a2 + 100a + 25
= 100a(a + 1) + 25.
Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;
Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được
(10a + 5)2 = 100a(a + 1) + 25
Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.
Áp dụng;
- Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.
- Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.
- 652 = 4225
- 752 = 5625.
Bài 4 :
a) 342 + 662 + 68 . 66 = 342 + 2 . 34 . 66 + 662 = (34 + 66)2 = 1002 = 10000.
b) 742 + 242 – 48 . 74 = 742 - 2 . 74 . 24 + 242 = (74 - 24)2
=502 =2500
Bài giải:
a) (a + b)2 = (a – b)2 + 4ab
- Biến đổi vế trái:
(a + b)2 = a2 +2ab + b2 = a2 – 2ab + b2 + 4ab
= (a – b)2 + 4ab
Vậy (a + b)2 = (a – b)2 + 4ab
- Hoặc biến đổi vế phải:
(a – b)2 + 4ab = a2 – 2ab + b2 + 4ab = a2 + 2ab + b2
= (a + b)2
Vậy (a + b)2 = (a – b)2 + 4ab
b) (a – b)2 = (a + b)2 – 4ab
Biến đổi vế phải:
(a + b)2 – 4ab = a2 +2ab + b2 – 4ab
= a2 – 2ab + b2 = (a – b)2
Vậy (a – b)2 = (a + b)2 – 4ab
Áp dụng: Tính:
a) (a – b)2 = (a + b)2 – 4ab = 72 – 4 . 12 = 49 – 48 = 1
b) (a + b)2 = (a – b)2 + 4ab = 202 + 4 . 3 = 400 + 12 = 412
CMR: (a + b)2 = (a - b)2 + 4ab
(a - b)2 = (a + b)2 - 4ab
Ta có: (a + b)2 = a2 + 2ab + b2
= a2 +2ab + b2 - 2ab +2ab
= a2 - 2ab + b2 + 2ab +2ab
= (a - b)2 +4ab
Ta có: (a - b)2 = a2 - 2ab + b2
= a2 - 2ab + b2 + 2ab - 2ab
= a2 + 2ab + b2 - 2ab - 2ab
= (a + b)2 - 4ab
Áp dụng:
a) Tính (a - b)2 , biết a + b = 7 và a.b = 12
Ta có: (a - b)2 = (a + b)2 - 4ab
= 72 - 4.12
= 49 - 48
Vậy (a - b)2 = 1
b) Tính (a + b)2 , biết a - b = 7 và a.b = 3
Ta có: (a + b)2 = (a - b)2 + 4ab
= 72 + 4.3
= 49 + 12
Vậy ( a + b)2 = 61
2/
a,Ta có: a+b+c=0
<=>(a+b+c)2=0
<=>a2+b2+c2+2(ab+bc+ca)=0
<=>2+2(ab+bc+ca)=0
<=>ab+bc+ca=\(\frac{-2}{2}=-1\)
<=>(ab+bc+ca)2=1
<=>a2b2+b2c2+c2a2+2abc(a+b+c)=1
<=>a2b2+b2c2+c2a2=1 (vì a+b+c=0)
Lại có: a2+b2+c2=2
<=>(a2+b2+c2)2=4
<=>a4+b4+c4+2(a2b2+b2c2+c2a2)=4
<=>a4+b4+c4+2=4 (vì a2b2+b2c2+c2a2=1)
<=>a4+b4+c4=2
b, tương tự a
1/
b, \(B=9x^2-6x+2=9x^2-6x+1+1=\left(3x-1\right)^2+1\)
Vì \(\left(3x-1\right)^2\ge0\Rightarrow B=\left(3x-1\right)^2+1\ge1\)
Dấu "=" xảy ra khi x=1/3
Vậy Bmin = 1 khi x = 1/3
c,\(C=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow C=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi x=-1/2
Vậy...
d, \(D=2x^2+2x+1=2\left(x^2+x+\frac{1}{2}\right)=2\left(x^2+x+\frac{1}{4}+\frac{1}{4}\right)=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\)
Vì \(2\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow D=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Dấu "=" xảy ra khi x=-1/2
Vậy...
2) a) Ta có B = \(\frac{x+2}{x-2}-\frac{x-2}{x+2}-\frac{16}{4-x^2}=\frac{\left(x+2\right)^2-\left(x-2\right)^2+16}{\left(x-2\right)\left(x+2\right)}=\frac{8\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{8}{x-2}\)
Khi |x - 1| = 2
=> \(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Khi x = 3 (thỏa mãn) => A = \(\frac{3^2-2.3}{3+1}=\frac{3}{4}\)
Khi x = - 1 (không thỏa mãn) => Không tìm được A
b) Ta có P = \(A.B=\frac{x^2-2x}{x+1}.\frac{8}{x-2}=\frac{8x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{8x}{x+1}\)
Đẻ P < 8
=> \(\frac{8x}{x+1}< 8\Leftrightarrow\frac{x}{x+1}< 1\)
=> \(\orbr{\begin{cases}x< x+1\left(x>-1\right)\\x>x+1\left(x< -1\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}0x< 1\left(tm\right)\\0x>1\left(\text{loại}\right)\end{cases}}\)
Vậy x > - 1 thì P < 8
1.a (3x-2y)2= (3x)2 - 2. 3x . 2y - (2y)2 = 9x2 - 12xy - 4y2
2.b (2x - 1/2)2 = (2x)2 - 2.2x.1/2 - (1/2)2= 4x2 - 2 - 1/4
3.c (x/2 - y) (x/2+y)= (x/2)2 - (y)2 = x/4 - y2
Bài 1 :
\(\left(3x-2y\right)^2=9x^2-12xy+4y^2\)
\(\left(2x-\frac{1}{2}\right)^2=4x^2-4x+\frac{1}{4}\)
\(\left(\frac{x}{2}-y\right)\left(\frac{x}{2}+y\right)=\frac{x^2}{4}-y^2\)
\(\left(x+\frac{1}{3}\right)^3=x^3+x^2+\frac{1}{3}x+\frac{1}{27}\)
\(\left(x-2\right)\left(x^2+2x+2^2\right)=x^3-8\)
Bài giải:
49x2 – 70x + 25 = (7x)2 – 2 . 7x . 5 + 52 = (7x – 5)2
a) Với x = 5: (7 . 5 – 5)2 = (35 – 5)2 = 302 = 900
b) Với x = 17: (7 . 17 – 5)2 = (1 – 5)2 = (-4)2 = 16
Bài 1:
x2 + 2xy + 4y2 = ( x + 2y )2
\(\Rightarrow\)Đúng
Bài 2
( a + b )2 = ( a - b )2 + 4ab
Xét VP : ( a - b)2 - 4ab = a2 - 2ab + b2 + 4ab
= a2 + 2ab + b2 = ( a + b )2
= VT
\(\Rightarrow\)đpcm
( a - b)2 = ( a + b )2 - 4ab
Xét VP: a2 + 2ab + b2 -4ab
= a2 - 2ab + b2 = ( a - b)2
= VT
\(\Rightarrow\)đpcm
Áp dụng:
a) Ta có: ( a - b)2 = ( a + b)2 - 4ab
Thay a + b = 7 ; ab = 12
\(\Rightarrow\)72 - 4.12 = 49 - 48 = 1
b) Ta có : ( a + b )2 = ( a - b)2 + 4ab
Thay a - b = 20 ; ab = 3
\(\Rightarrow\) 202 + 4.3 = 400 + 12 = 412
Bài 3:
Ta có: 49x2 - 70x + 25
= ( 7x)2 - 2.7x.5 + 52
= (7x - 5 )2
a) Thay x = 5
\(\Rightarrow\) ( 7.5 - 5)2 = 302 = 900
b) Thay x = 7
\(\Rightarrow\)( 7 . \(\dfrac{1}{7}\)- 5 )2 = 16
Bài 4: Tính
a) ( a + b + c )2
= [ ( a + b ) + c ] 2
= ( a+ b)2 + 2.( a + b).c + c2
= a2 + 2ab + b2 + 2ac + 2bc + c2
b) ( a + b - c)2
= [ a + ( b - c)]2
= a2 + 2.a.( b - c) + ( b - c )2
= a2 + 2ab - 2ac + b2 - 2bc + c2
c) ( a - b - c)2
= [( a - b)-c ]2
= ( a- b)2 - 2. ( a - b ).c + c2
= a2 - 2ab + b2 - 2ac + 2bc + c2