Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 8
c) chứng minh \(\overline{aaa}⋮37\)
ta có: \(aaa=a\cdot111\)
\(=a\cdot37\cdot3⋮37\)
\(\Rightarrow aaa⋮37\)
k mk nha
k mk nha.
#mon
B:6 so sánh
a, \(7^{18}\) + \(7^{19}\) và \(7^{20}\)
ta có : \(7^{18}\) + \(7^{19}\) = \(7^{37}\)
mà \(7^{37}\) > \(7^{12}\)
\(\Rightarrow\) \(7^{18}\) + \(7^{19}\) > \(7^{20}\)
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm
Tìm x
a.( x - 140 ) : 3 = 27
x - 140 = 27 . 3
x - 140 = 81
x = 221
b.14 - 4 ( x + 1 ) = 10
4 ( x + 1 ) = 14 - 10
4 ( x +1) = 4
x + 1 = 1
x = 0
c. 15 ( 7 - x ) = 15
7 - x = 1
x = 6
d.34 ( x - 3 ) = 0
\(\Rightarrow\) 34 = 0 hoặc x - 3 = 0
1. 34 = 0 ( vô lí )
2. x - 3 = 0 \(\Rightarrow\) x = 3
e. 24 + 6 (3 - x ) = 30
6( 3- x ) = 30 - 24
6( 3 - x ) = 6
3 - x = 1
x = 2
f. x3 + 24 = 51
x3 = 51 - 24
x3 = 27
\(\Rightarrow\)x = 3 ; x = -3
g. ( x- 5 )2 - 5 = 44
( x - 5) 2 = 49
\(\Rightarrow\)x - 5 = 7 hoặc x - 5 = -7
1. x - 5 = 7\(\Rightarrow\)x = 12
2. x - 5 = -7 \(\Rightarrow\)x = -2
h. ( x + 1 )3 - 23 = 4
( x + 1 )3 =27
\(\Rightarrow\) x + 1 = 3 hoặc x + 1 = -3
1. x + 1 = 3\(\Rightarrow\)x = 2
2. x + 1 = -3 \(\Rightarrow\)x = -4
a) \(\left(x-1\right):3=2^3\) \(\Leftrightarrow\) \(\left(x-1\right):3=8\) \(x+1=24\) \(\Leftrightarrow\) \(x=23\) vậy \(x=23\)
b) \(12-2\left(x+5\right)=-10\) \(\Leftrightarrow\) \(12-2x-10=-10\)
\(\Leftrightarrow\) \(-2x=-12\) \(\Leftrightarrow\) \(x=6\) vậy \(x=6\)
c) \(x-12\left(x+5\right)=-10\) \(\Leftrightarrow\) \(x-12x-60=-10\)
\(\Leftrightarrow\) \(-11x=50\) \(\Leftrightarrow\) \(x=\dfrac{50}{-11}\) vậy \(x=\dfrac{50}{-11}\)
e) \(13-x:2=10\Leftrightarrow-x:2=-3\Leftrightarrow x=\dfrac{3}{2}\)
f) \(\left|12-x\right|-7=5\)
th1 : \(x\le12\) thì \(\left|12-x\right|-7=5\) \(\Leftrightarrow\) \(12-x-7=5\) \(\Leftrightarrow\) \(-x=0\Leftrightarrow x=0\)
th2 : \(x>12\) thì \(\left|12-x\right|-7=5\) \(\Leftrightarrow\) \(x-12-7=5\) \(\Leftrightarrow\) \(x=24\) vậy \(x=0;x=24\)
i) \(x^2-7=2\Leftrightarrow x^2=9\Leftrightarrow x=3\) vậy \(x=3\)
k) \(x^3-4=-12\) \(\Leftrightarrow\) \(x^3=-8\) \(\Leftrightarrow x=-2\) vậy \(x=-2\)
a)\(\left(x-1\right):3=2^3\Rightarrow x-1=2^3.3=24\Rightarrow x=25\)
b)\(12-2\left(x+5\right)=-10\Leftrightarrow12-2x-10=-10\Rightarrow2-2x=-10\Rightarrow2x=12\Rightarrow x=6\)c)\(x-12\left(x+5\right)=-10\Rightarrow x-12x-60=-10\Rightarrow-11x-60=-10\Rightarrow-11x=-70\Rightarrow x=\dfrac{70}{-11}\)d)\(6-\left|x\right|=5\Rightarrow\left|x\right|=1\Rightarrow x=\left\{\pm1\right\}\)
Làm nốt nha
3:
a: \(\dfrac{\left(x-3\right)}{5}=6^2-2^3\cdot4\)
=>\(\dfrac{x-3}{5}=36-8\cdot4=4\)
=>x-3=20
=>x=23
b: \(3^{x+2}+5\cdot2^3=47+\dfrac{18}{4^2-7}\)
=>\(3^{x+2}+5\cdot8=47+\dfrac{18}{16-7}=49\)
=>\(3^{x+2}=9\)
=>x+2=2
=>x=0
c: \(2^{x+1}-2^x=8^2\)
=>\(2^x\cdot2-2^x=2^6\)
=>\(2^x=2^6\)
=>x=6
d: \(\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\cdot x^2=99\)
=>\(x^2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)=99\)
=>\(x^2\cdot\dfrac{99}{100}=99\)
=>\(x^2=100\)
=>\(\left[{}\begin{matrix}x=10\\x=-10\end{matrix}\right.\)
e: \(\left(2x-3\right)^7=\left(2x-3\right)^5\)
=>\(\left(2x-3\right)^5\left[\left(2x-3\right)^2-1\right]=0\)
=>\(\left(2x-3\right)^5\cdot\left(2x-3-1\right)\left(2x-3+1\right)=0\)
=>\(\left(2x-3\right)^5\left(2x-4\right)\left(2x-2\right)=0\)
=>\(\left[{}\begin{matrix}2x-3=0\\2x-4=0\\2x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=2\\x=1\end{matrix}\right.\)
f: \(\left(x-2\right)^{10}=\left(x-2\right)^8\)
=>\(\left(x-2\right)^8\left[\left(x-2\right)^2-1\right]=0\)
=>\(\left(x-2\right)^8\left(x-2-1\right)\left(x-2+1\right)=0\)
=>\(\left(x-2\right)^8\cdot\left(x-3\right)\left(x-1\right)=0\)
=>\(x\in\left\{2;3;1\right\}\)