Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = 1 + 5 + 52 +....+ 521
5M = 5 + 52 + .... + 522
5M - M = 522 - 1
4M = 522 - 1
4M + 4 = 522 - 1 + 4
4M + 4 = 522 + 3
Ta có : M = 1 + 5 + 52 + 53 + ..... + 521
=> 5M = 5 + 52 + 53 + ..... + 522
=> 5M - M = 522 - 1
=> 4M = 522 - 1
=> 4M + 4 = 522 - 1 + 4
=> 4M + 4 = 522 + 3
d) -4 . 2 . 6 . 25 . (-7) . 5
= (-4 . 25) . (-7 . 2 . 5 . 6)
= -100 . (-420)
= 42000
e) -41 . (59 + 2) + 59 . (41 - 2)
= -41 . 59 + (-41) . 2 + 59 . 41 - 59 . 2
= (-41 . 59 + 59 . 41) + (-41 . 2 - 59 . 2)
= [59 . (-41 + 41)] + [2 . (-41 - 59)]
= (59 . 0) + [2 . (-100)]
= 0 + (-200)
= -200
f) (-5) . (-4) - 33 + (-1)2017 . (-6)
= -5 . (-4) - 27 + (-1) . (-6)
= [-5 . (-4)] - 27 + [-1 . (-6)]
= 20 - 27 + 6
= -1
Bài 1 :
\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)
\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)
\(\Rightarrow M< N\)
Bài 3 :
a) \(t^2+5t-8\) khi \(t=2\)
\(=5^2+2.5-8\)
\(=25+10-8\)
\(=27\)
b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)
\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)
\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)
c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)
\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)
\(\left(1\right)=1^3=1\)
c: \(C=5\cdot4^3+2^4\cdot5+41\)
\(=5\cdot64+16\cdot5+41\)
\(=320+80+41\)
\(=441=21^2\)
(59-5^30)-(59+3^3-5^30)
=[(59-5^30)-(59-5^30)]+3^3
=0+9
=9
2.
Ta có : \(A=\frac{n+5}{n+2}=\frac{n+2+3}{n+2}=1+\frac{3}{n+2}\)
để A là số nguyên thì \(\frac{3}{n+2}\)là số nguyên
\(\Rightarrow3⋮n+2\)
\(\Rightarrow\)n + 2 \(\in\)Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }
Lập bảng ta có :
n+2 | 1 | -1 | 3 | -3 |
n | -1 | -3 | 1 | -5 |
Vậy n \(\in\){ -1 ; -3 ; 1 ; -5 }
3.
\(\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}\)
\(=\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{9}\right)+\left(1+\frac{1}{27}\right)+...+\left(1+\frac{1}{3^{98}}\right)\)
\(=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{3^{98}}\right)\)
\(=97+\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)\)
gọi \(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)( 1 )
\(3B=1+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\)( 2 )
Lấy ( 2 ) trừ ( 1 ) ta được :
\(2B=1-\frac{1}{3^{98}}< 1\)
\(\Rightarrow B=\frac{1-\frac{1}{3^{98}}}{2}< \frac{1}{2}< 1\)
\(\Rightarrow97+\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)< 100\)
4.
đặt \(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)
\(5A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\)
\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\)
\(5A=1-\frac{1}{31}< 1\)
\(\Rightarrow A=\frac{1-\frac{1}{31}}{5}< \frac{1}{5}< 1\)
Ta có : \(2A=2.\left(1+2+2^2+2^3+...+2^{2015}+2^{2016}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{2016}+2^{2017}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2015}+2^{2016}\right)\)
\(A=2+2^3+2^4+2^5+...+2^{2016}+2^{2017}-1-2-2^2-2^3-...-2^{2015}-2^{2016}\)
\(A=2^{2017}-1\)
\(C=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{997.999}\)
\(\Leftrightarrow C=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{997.999}\right)\)
\(\Leftrightarrow C=\frac{5}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{997}-\frac{1}{999}\right)\)
\(\Leftrightarrow C=\frac{5}{2}\left(1-\frac{1}{999}\right)=\frac{5}{2}.\frac{998}{999}=\frac{2495}{999}=2\frac{497}{999}\)
\(A=\frac{2}{4}+\frac{2}{28}+\frac{2}{70}+\frac{2}{130}+\frac{2}{208}\)
\(\Leftrightarrow A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+\frac{2}{10.13}+\frac{2}{13.16}\)
\(\Leftrightarrow A=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+\frac{3}{13.16}\right)\)
\(\Leftrightarrow A=\frac{2}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
\(\Leftrightarrow A=\frac{2}{3}\left(1-\frac{1}{16}\right)=\frac{2}{3}.\frac{15}{16}=\frac{5}{8}\)
C = 5/1x3 + 5/3x5 + 5/5x7 + ... + 5/997x999
C = 5 - 5/3 + 5/3 - 5/5 + 5/5 - 5/7 + ... + 5/997 - 5/999
C = 5 - 5/999
C = bạn tự tính nhé !
A = 2/4 + 2/28 + 2/70 + 2/130 + 2/208
A = 2/1x4 + 2/4x7 + 2/7x10 + 2/10x13 + 2/13x16
A = 2 - 2/4 + 2/4 - 2/7 + 2/7 - 2/10 + 2/10 - 2/13 + 2/13 - 2/16
A = 2 - 2/16
A = bạn tự tính nhé !
M = 5 + 52 + 53 + 54 + ... + 559 + 560
5.M = 52 + 53 + 54 + 55 + ... + 560 + 561
5M - M =(52 + 53 + 54 + .... + 560 + 561) - (5 + 52 + 53 + ... + 559 + 560)
4M = 52 + 53 + 54 + .... + 560 + 561 - 5 - 52 - 53 - ...- 559 - 560
4M = (52 - 52) + (53 - 53) + ....+ (560 - 560) + (561 - 5)
4M = 561 - 5
4M + 5 = 561 - 5 + 5
4M = 561