K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 3 2020

Bài 1:

Các PT bậc nhất: a, c, e, f

a) $a=1; b=2$

c) $a=-12; b=1$

e) $a=4; b=-12$

f) $a=2; b=-4$

AH
Akai Haruma
Giáo viên
7 tháng 3 2020

Bài 2:

a) $(-2)^2-5(-2)+6\neq 0$ nên $x=-2$ không phải nghiệm của pt $x^2-5x+6=0$

Vậy $a$ sai

b) Đề không rõ ("S=F" là như thế nào vậy bạn)

c) $0x=0$ có vô số nghiệm $x\in\mathbb{R}$

Vậy $c$ sai

d) Đúng. Đây là pt ẩn $x$

e) Sai. Vì $ax+b=0$ là pt bậc nhất 1 ẩn khi mà $a\neq 0$

f) $9^2\neq 3$ nên $x^2=3$ không có nghiệm $x=9$

19 tháng 2 2020

ai biết được!

25 tháng 1 2017

1a,(1-x)(x+2)=0

=>1-x=0=>x=1

=>x+2=0=>x=-2

1b,(2x-2)(6+3x)(3x+2)=0

=>2x-2=0=>2(x-1)=0=>x=1

=>6+3x=0=>3x=-6=>x=-2

=>3x+2=0=>3x=-2=>x=-2/3

1c,(5x-5)(3x+2)(8x+4)(x^2-5)=0

=>5x-5=0=>5(x-1)=0=>x=1

=>3x+2=0=>x=-2/3

=>8x+4=0=>4(2x+1)=0=>2x+1=0=>2x=-1=>x=-1/2

=>x^2-5=0=>x^2=5=>x=\(+-\sqrt{5}\)

 Chọn đáp án đúng.a)      Nghiệm của phương trình \(2x + 6 = 0\) là:A. \(x =  - 3\).    B. \(x = 3\).    C. \(x = \frac{1}{3}\).    D. \(x =  - \frac{1}{3}\).b)     Nghiệm của phương trình \( - 3x + 5 = 0\) là:A. \(x =  - \frac{5}{3}\).    B. \(x = \frac{5}{3}\).    C. \(x = \frac{3}{5}\).     D. \(x =  - \frac{3}{5}\).c)      Nghiệm của phương trình \(\frac{1}{4}z =  - 3\) là:A. \(z =  - \frac{3}{4}\).    B. \(z =  -...
Đọc tiếp

 Chọn đáp án đúng.

a)      Nghiệm của phương trình \(2x + 6 = 0\) là:

A. \(x =  - 3\).    

B. \(x = 3\).    

C. \(x = \frac{1}{3}\).

    D. \(x =  - \frac{1}{3}\).

b)     Nghiệm của phương trình \( - 3x + 5 = 0\) là:

A. \(x =  - \frac{5}{3}\).    

B. \(x = \frac{5}{3}\).    

C. \(x = \frac{3}{5}\).     

D. \(x =  - \frac{3}{5}\).

c)      Nghiệm của phương trình \(\frac{1}{4}z =  - 3\) là:

A. \(z =  - \frac{3}{4}\).    

B. \(z =  - \frac{4}{3}\).     

C. \(z =  - \frac{1}{{12}}\).     

D. \(x =  - 12\).

d)     Nghiệm của phương trình \(2\left( {t - 3} \right) + 5 = 7t - \left( {3t + 1} \right)\) là:

A. \(t = \frac{3}{2}\).      

B. \(t = 1\).      

C. \(t =  - 1\).      

D. \(t = 0\).

e)      \(x =  - 2\) là nghiệm của phương trình:

A. \(x - 2 = 0\).      

B. \(x + 2 = 0\).      

C. \(2x + 1 = 0\).       

D. \(2x - 1 = 0\).

2
HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

a)  

\(\begin{array}{l}2x + 6 = 0\\\,\,\,\,\,\,\,2x =  - 6\\\,\,\,\,\,\,\,\,\,\,x = \left( { - 6} \right):2\\\,\,\,\,\,\,\,\,\,\,x =  - 3\end{array}\)

Vậy \(x =  - 3\) là nghiệm của phương trình.

\( \to \) Chọn đáp án A.

b)  

\(\begin{array}{l} - 3x + 5 = 0\\\,\,\,\,\,\, - 3x =  - 5\\\,\,\,\,\,\,\,\,\,\,\,\,x = \left( { - 5} \right):\left( { - 3} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,x = \frac{5}{3}\end{array}\)

Vậy \(x = \frac{5}{3}\) là nghiệm của phương trình.

\( \to \) Chọn đáp án B.

c)

\(\begin{array}{l}\frac{1}{4}z =  - 3\\\,\,\,\,z = \left( { - 3} \right):\frac{1}{4}\\\,\,\,\,z =  - 12\end{array}\)

Vậy \(z =  - 12\) là nghiệm của phương trình.

\( \to \) Chọn đáp án D.

HQ
Hà Quang Minh
Giáo viên
11 tháng 1 2024

d)

\(\begin{array}{l}2\left( {t - 3} \right) + 5 = 7t - \left( {3t + 1} \right)\\\,\,\,\,2t - 6 + 5 = 7t - 3t - 1\\\,\,\,\,\,\,\,\,\,\,\,\,2t - 1 = 4t - 1\\\,\,\,\,\,\,\,\,\,2t - 4t =  - 1 + 1\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 2t = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,t = 0:\left( { - 2} \right)\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,t = 0\end{array}\)

Vậy \(t = 0\) là nghiệm của phương trình.

\( \to \) Chọn đáp án D.

e)

Với đáp án A:

Thay \(x =  - 2\) vào phương trình \(x - 2 = 0\) ta được \( - 2 - 2 =  - 4 \ne 0\)

Vậy \(x =  - 2\) không là nghiệm của phương trình \(x - 2 = 0\).

Với đáp án B:

Thay \(x =  - 2\) vào phương trình \(x + 2 = 0\) ta được \( - 2 + 2 = 0\)

Vậy \(x =  - 2\) là nghiệm của phương trình \(x + 2 = 0\).

\( \to \) Chọn đáp án B

9 tháng 2 2020

cái bài 2 câu 1 câu 2 và câu 3 sửa cái vế phải lại thành 3/2-1-2x/4 và -15/5 và 2.(x-1)/5

8 tháng 4 2020

Câu 1:

$|x|=1$ \(x=\pm1\)
$|2x-1|=2$ \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{1}{2}\end{matrix}\right.\)

Câu 2:

Để phương trình là phương trình bậc nhất thì \(m-1\ne0\Leftrightarrow m\ne1\)

b) Với \(m=1\), phương trình tương đương \(0x=0\) suy ra phương trình vô số nghiệm

Với \(m\ne1\)

\((m-1)x + m ^2 - 1 = 0 \Leftrightarrow (m-1)x=1-m^2 \)

\(\Leftrightarrow x=\frac{1-m^2}{m-1}=\frac{-\left(m-1\right)\left(1+m\right)}{m-1}=-1-m\)

 1.Phép tính 32x+6−x−62x2+6x32x+6−x−62x2+6x có kết quả là:   A. −1x+3−1x+3  B. 1x+31x+3  C. 1x1x  D. −1x−1x  2.Hiệu của hai phân thức a+9ba2−9b2a+9ba2−9b2 và phân thức 3ba2+3ab3ba2+3ab là phân thức nào sau đây:   A. 1a1a.  B. a+3ba(a−3b)a+3ba(a−3b).  C. −a+3ba(a−3b)−a+3ba(a−3b).  D. 1a−3b1a−3b.  3.Thực hiện phép tính: 3x−64−9x2−13x−2+13x+23x−64−9x2−13x−2+13x+2được kết...
Đọc tiếp

 

1.

Phép tính 32x+6−x−62x2+6x32x+6−x−62x2+6x có kết quả là:

  

 A. −1x+3−1x+3 
 B. 1x+31x+3 
 C. 1x1x 
 D. −1x−1x 

 

2.

Hiệu của hai phân thức a+9ba2−9b2a+9ba2−9b2 và phân thức 3ba2+3ab3ba2+3ab là phân thức nào sau đây:

  

 A. 1a1a. 
 B. a+3ba(a−3b)a+3ba(a−3b). 
 C. −a+3ba(a−3b)−a+3ba(a−3b). 
 D. 1a−3b1a−3b. 

 

3.

Thực hiện phép tính: 3x−64−9x2−13x−2+13x+23x−64−9x2−13x−2+13x+2được kết quả là:

  

 A. 12x+312x+3 
 B. x−23x+2x−23x+2 
 C. −13x+2−13x+2 
 D. 13x−213x−2 

 

4.

Giá trị của biểu thức P=10(x+2)(3−x)−12(3−x)(x+3)−1(x+3)(x+2)P=10(x+2)(3−x)−12(3−x)(x+3)−1(x+3)(x+2)tại x = −34−34 là:

  

 A. 16451645. 
 B. −74−74. 
 C. −158−158. 
 D. 7474 

 

5.

Cho x+4x2−4−1x2+2x=Px+4x2−4−1x2+2x=P thì P bằng phân thức nào sau đây :

  

 A. x−1x(x−2)x−1x(x−2) 
 B. x2−3x−2x(x2−4)x2−3x−2x(x2−4) 
 C. x3+3x+2x(x2−4)x3+3x+2x(x2−4) 
 D. x+1x(x−2)x+1x(x−2) 

 

6.

Tổng hai phân thức 1−xx3−11−xx3−1và 1x2−x+11x2−x+1 bằng phân thức nào sau đây:

  

 A. 2(x−1)x3+12(x−1)x3+1. 
 B. 2−xx3+12−xx3+1. 
 C. 2+xx3+12+xx3+1. 
 D. 2x3+12x3+1 

 

7.

Giá trị của biểu thức P=4a2−3a+17a3−1+2a−1a2+a+1+61−aP=4a2−3a+17a3−1+2a−1a2+a+1+61−a tại a = −12−12 là:

  

 A. - 9 
 B. - 16 
 C. 16 
 D. 9 

 

8.

Tổng của các phân thức P: x2+2xy+4y2x2−9y2;x3y−x;y3y+xx2+2xy+4y2x2−9y2;x3y−x;y3y+xbằng phân thức nào sau đây:

  

 A. x2+y2x2−9y2x2+y2x2−9y2 
 B. y2x2−9y2y2x2−9y2 
 C. (x+y)2x2−9y2(x+y)2x2−9y2 
 D. 0 

 

9.

Tổng của các phân thức: x+2y2y2−xy,8xx2−4y2x+2y2y2−xy,8xx2−4y2và 2y−x2y2+xy2y−x2y2+xy là phân thức nào sau đây:

  

 A. 2(2x−y)x(2y+x)2(2x−y)x(2y+x) 
 B. 2(2y−x)y(2y+x)2(2y−x)y(2y+x). 
 C. 2y−xy(2y+x)2y−xy(2y+x). 
 D. 2(x−2y)y(2y+x)2(x−2y)y(2y+x). 

 

10.

Tổng của các phân thức ba2−b2,aa2+ab−2a−2bba2−b2,aa2+ab−2a−2b và 1a+b1a+b là:

  

 A. −2a2−2a+ab(a2−b2)(a−2)−2a2−2a+ab(a2−b2)(a−2). 
 B. 2a2−2a+ab(a2−b2)(2−a).2a2−2a+ab(a2−b2)(2−a). 
 C. 2a2+2a−ab(a2−b2)(a−2)2a2+2a−ab(a2−b2)(a−2) 
 D. 2a2−2a−ab(a2−b2)(a−2)2a2−2a−ab(a2−b2)(a−2). 
0
HQ
Hà Quang Minh
Giáo viên
10 tháng 1 2024

a) Quan sát bảng trên ta thấy khi x = 1; x = 2; x = 3; x = 4; x = 5; x = 6 thì ta đều xác định giá trị của y là y = − 2.

Vì với mỗi giá trị của x ta xác định được một giá trị của y nên đại lượng y là hàm số của đại lượng x.

b) Quan sát bảng trên ta thấy khi x = 1; x = 2; x = 3; x = 4; x = 1; x = 5 thì ta đều xác định  giá trị của y lần lượt là: y = − 2; y = − 3; y = − 4; y = − 5; y = − 6; y = − 7.

Vì x = 1 nhận hai giá trị y = -2 và y = -6 nên đại lượng y không là hàm số của đại lượng x.