\(\sqrt{x+2\sqrt{x}+1}-\sqrt{x-2\sqrt{x}+1}=2\) =2

2, 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2016

1. \(\sqrt{x^2+2x+3}=\sqrt{\left(x+1\right)^2+2}>0\)

=> Biểu thức luôn luôn có nghĩa với mọi x

2. \(\sqrt{x^2-2x+2}=\sqrt{\left(x-1\right)^2+1}>0\)

=> Biểu thức luôn luôn có nghĩa với mọi x

3. \(\sqrt{x^2+2x-3}=\sqrt{\left(x+1\right)^2-4}\)

\(\Rightarrow DK:\left(x+1\right)^2\ge4\)

4. \(\sqrt{2x^2+5x+3}=\sqrt{\left(\sqrt{2}x+\frac{5\sqrt{2}}{4}\right)^2-\frac{1}{8}}\)

 \(\Rightarrow DK:\left(\sqrt{2}x+\frac{5\sqrt{2}}{4}\right)^2\ge\frac{1}{8}\)

K biết đúng k.. Sai thôi

3 tháng 9 2016

1)    tc :     x+ 2x +3  =   x2 + 2x + 1 + 2   =   (x+1)2 +2 > 0 vs mọi x

     => căn thức có nghĩa vs mọi x

2)    tương tự câu 1:   x2 - 2x + 2  =  (x-1)2 +1   >    0   vs mọi x

        => căn thức có nghĩa vs mọi x

3)    \(\sqrt{x^2+2x-3}\)có nghĩa    <=>  x2+2x-3\(\ge0\)

                                                          <=> (x+1)2 - 4 \(\ge0\)

                                                        <=> (x+1)2 \(\ge4\)

                                                         <=> x+1 \(\ge2\)

                                                         <=> x \(\ge1\)

4) \(\sqrt{2x^2+5x+3}\)có nghĩa   <=>  2x2 +5x +3 \(\ge0\)

                                                      <=> 2x2 + 2x + 3x + 3 \(\ge0\)

                                                      <=> (2x+3)(x+1) \(\ge0\)

                                                       <=>\(\hept{\begin{cases}2x+3\ge0\\x+1\ge0\end{cases}}\)  hoặc    \(\hept{\begin{cases}2x+3\le0\\x+1\le0\end{cases}}\)

                                                     <=>  \(\hept{\begin{cases}x\ge\frac{-3}{2}\\x\ge-1\end{cases}}\)        hoặc   \(\hept{\begin{cases}x\le\frac{-3}{2}\\x\le-1\end{cases}}\)

                                                    <=>   \(\frac{-3}{2}\le x\le-1\)

28 tháng 11 2016

Ta có

\(x=\frac{\sqrt{4+2\sqrt{3}}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}-2}\)

\(=\frac{\sqrt{3+2\sqrt{3}+1}-\sqrt{3}}{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3.4.\sqrt{5}-8}-2}\)

\(=\frac{\sqrt{3}+1-\sqrt{3}}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)-2}=\frac{1}{5-4-2}=-1\)

Thế vào ta được

\(P=\left(x^2+x+1\right)^{2013}+\left(x^2+x-1\right)^{2013}\)

\(=\left(1-1+1\right)^{2013}+\left(1-1-1\right)^{2013}=1-1=0\)

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

2.

ĐKXĐ: \(x\geq -2\)

Ta có : \(\sqrt{x+9}=5-\sqrt{2x+4}\)

\(\Leftrightarrow (\sqrt{x+9}-3)+(\sqrt{2x+4}-2)=0\)

\(\Leftrightarrow \frac{x}{\sqrt{x+9}+3}+\frac{2x}{\sqrt{2x+4}+2}=0\) (liên hợp)

\(\Leftrightarrow x(\frac{1}{\sqrt{x+9}}+\frac{2}{\sqrt{2x+4}+2})=0\)

Với mọi $x\geq -2$, ta thấy \(\frac{1}{\sqrt{x+9}}+\frac{2}{\sqrt{2x+4}+2}>0\)

\(\Rightarrow \frac{1}{\sqrt{x+9}}+\frac{2}{\sqrt{2x+4}+2}\neq 0\)

Do đó: \(x=0\) là nghiệm duy nhất của PT

3. ĐKXĐ: \(x\geq -1\)

\(x^2+\sqrt{x+1}=1\)

\(\Leftrightarrow (x^2-1)+\sqrt{x+1}=0\)

\(\Leftrightarrow (x-1)(x+1)+\sqrt{x+1}=0\)

\(\Leftrightarrow \sqrt{x+1}[(x-1)\sqrt{x+1}+1]=0\)

\(\Rightarrow \left[\begin{matrix} \sqrt{x+1}=0(1)\\ (x-1)\sqrt{x+1}+1=0(2)\end{matrix}\right.\)

Với \((1)\Rightarrow x=-1\) (thỏa mãn)

Với \((2)\Leftrightarrow (x-1)\sqrt{x+1}=-1\Rightarrow \left\{\begin{matrix} -1\leq x\leq 1\\ (x-1)^2(x+1)=1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} -1\leq x\leq 1\\ (x-1)^2(x+1)=1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} -1\leq x\leq 1\\ x(x^2-x-1)=0\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=0\\ x=\frac{1-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{-1;0;\frac{1-\sqrt{5}}{2}\right\}\)

AH
Akai Haruma
Giáo viên
20 tháng 6 2019

4.

ĐKXĐ: \(x\geq \frac{3}{4}\)

\(x-\sqrt{4x-3}=2\)

\(\Leftrightarrow (x-7)-(\sqrt{4x-3}-5)=0\)

\(\Leftrightarrow (x-7)-\frac{4x-3-5^2}{\sqrt{4x-3}+5}=0\)

\(\Leftrightarrow (x-7)-\frac{4(x-7)}{\sqrt{4x-3}+5}=0\)

\(\Leftrightarrow (x-7)\left(1-\frac{4}{\sqrt{4x-3}+5}\right)=0\)

\(\Leftrightarrow (x-7).\frac{\sqrt{4x-3}+1}{\sqrt{4x-3}+5}=0\)

Dễ thấy \(\frac{\sqrt{4x-3}+1}{\sqrt{4x-3}+5}>0, \forall x\geq \frac{3}{4}\Rightarrow \frac{\sqrt{4x-3}+1}{\sqrt{4x-3}+5}\neq 0\)

Do đó: \(x-7=0\Leftrightarrow x=7\) là nghiệm duy nhất của pt

5.

ĐKXĐ: \(x\geq \frac{-15}{2}\)

\(x+\sqrt{2x+15}=0\Leftrightarrow \sqrt{2x+15}=-x\)

\(\Rightarrow \left\{\begin{matrix} -x\geq 0\\ 2x+15=x^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 0\\ x^2-2x-15=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\leq 0\\ (x-5)(x+3)=0\end{matrix}\right.\Rightarrow x=-3\)

Vậy..........

6. ĐKXĐ: \(x^2-6x+7\geq 0\)

PT \(\Leftrightarrow (x^2-6x+7)+\sqrt{x^2-6x+7}-12=0\)

Đặt \(\sqrt{x^2-6x+7}=a(a\geq 0)\) thì pt trở thành:

\(a^2+a-12=0\)

\(\Leftrightarrow (a-3)(a+4)=0\Rightarrow \left[\begin{matrix} a=3\\ a=-4\end{matrix}\right.\)

Vì $a\geq 0$ nên $a=3$

\(\Leftrightarrow \sqrt{x^2-6x+7}=3\)

\(\Leftrightarrow x^2-6x+7=9\)

\(\Leftrightarrow x^2-6x-2=0\Rightarrow x=3\pm \sqrt{11}\) (đều thỏa mãn)

Vậy........

10 tháng 8 2020

cần gấp thì mình làm cho 

\(\sqrt{x^2+2x+1}=\sqrt{x+1}\left(đk:x\ge1\right)\)

\(< =>\sqrt{\left(x+1\right)^2}=\sqrt{x+1}\)

\(< =>x+1=\sqrt{x+1}\)

\(< =>\frac{x+1}{\sqrt{x+1}}=1\)

\(< =>\sqrt{x+1}=1< =>x=0\left(ktm\right)\)

10 tháng 8 2020

ĐKXĐ : \(x\ge-1\)

Bình phương 2 vế , ta có :

\(x^2+2x+1=x+1\)

\(\Leftrightarrow x^2+2x+1-x-1=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)\

Vậy ...............................

2 tháng 3 2020

mình làm nốt câu còn lại ok

b) ta thấy x = 0 không là nghiệm của phương trình

chia cả 2 vế cho x khác 0, ta được :

\(\left(x-\frac{1}{x}\right)+\sqrt[3]{x-\frac{1}{x}}=2\)

đặt \(t=\sqrt[3]{x-\frac{1}{x}}\)

Ta có : \(t^3+t-2=0\Leftrightarrow\left(t-1\right)\left(t^2+t+2\right)=0\Leftrightarrow t=1\)

Khi đó : \(\sqrt[3]{x-\frac{1}{x}}=1\Leftrightarrow x-\frac{1}{x}=1\Leftrightarrow x=\frac{1\pm\sqrt{5}}{2}\)

Vậy ...

2 tháng 3 2020

a) Từ phương trình đã cho ta có: \(x\ge0\)

Rõ ràng x=0 không thỏa mãn phương trình đã cho nên x>0

Nhân với liên hợp của vế trái ta được:

\(\sqrt{2x^2+x+1}-\sqrt{x^2-x+1}=\frac{x+2}{3}\)

Kết hợp với phương trình đã cho ta có:

\(\sqrt{2x^2+x+1}=\frac{5x+1}{3}\)

Giải phương trình này được nghiệm \(x=\frac{-19+3\sqrt{65}}{14}\)