Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK: $x\geq 0$
\(A=2x-6\sqrt{x}-1=2(x-3\sqrt{x}+\frac{3^2}{2^2})-\frac{11}{2}\)
\(=2(\sqrt{x}-\frac{3}{2})^2-\frac{11}{2}\geq \frac{-11}{2}\)
Vậy GTNN của $A$ là $\frac{-11}{2}$. Giá trị này đạt được tại \((\sqrt{x}-\frac{3}{2})^2=0\Leftrightarrow x=\frac{9}{4}\)
b) Không đủ căn cứ để tìm min- max
c)
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}=\sqrt{(2x-1)^2}+\sqrt{(2x-3)^2}\)
\(=|2x-1|+|2x-3|\)
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
\(E=|2x-1|+|3-2x|\geq |2x-1+3-2x|=2\)
Vậy $E_{\min}=2$. Giá trị này đạt tại $(2x-1)(3-2x)\geq 0$
$\Leftrightarrow \frac{1}{2}\leq x\leq \frac{3}{2}$
d) ĐKXĐ: \(\frac{7}{2}\leq x\leq \frac{5}{2}\) (vô lý)
e)
\(A=-3x+6\sqrt{x}+3=6-3(x-2\sqrt{x}+1)=6-3(\sqrt{x}-1)^2\)
\(\leq 6\) do $(\sqrt{x}-1)^2\geq 0$ với mọi $x\geq 0$)
Vậy $A_{\max}=6$. Giá trị này xác định tại $(\sqrt{x}-1)^2=0\Leftrightarrow x=1$
f) ĐK: $x\geq 4$
\(E^2=4x-7-2\sqrt{(2x+1)(2x-8)}\)
Với mọi $x\geq 4$ thì:
\(2x+1> 2x-8\Rightarrow (2x+1)(2x-8)\geq(2x-8)^2\)
\(\Rightarrow E^2\leq 4x-7-2\sqrt{(2x-8)^2}=4x-7-2(2x-8)=9\)
$\Rightarrow E\leq 3$
Vậy $E_{\max}=3$ khi $2x-8=0\Leftrightarrow x=4$
BT1.
a,Ta có :\(A^2=-5x^2+10x+11\)
\(=-5\left(x^2-2x+1\right)+16\)
\(=-5\left(x-1\right)^2+16\)
Vì \(\left(x-1\right)^2\ge0\Rightarrow-5\left(x-1\right)^2\le0\)
\(\Rightarrow A^2\le16\Rightarrow A\le4\)
Dấu ''='' xảy ra \(\Leftrightarrow x=1\)
Vậy Max A = 4 \(\Leftrightarrow x=1\)
Câu b,c tương tự nhé.
a/ ĐK: \(x \ge -1\). Đặt \(\sqrt{x+1}=a \ge 0\)
PT: \(\Leftrightarrow6a-3a-2a=5\)
\(\Leftrightarrow a=5\)
\(\Leftrightarrow x+1=15\Leftrightarrow x=24\) (nhận)
b,c: Hai ý này đều làm theo cách bình phương hoặc đưa về phương trình chứa dấu giá trị tuyệt đối được nhé.
b) Cách 1: ĐKXĐ: Tự tìm
\(\sqrt{x^{2}-4x+4}=2\Leftrightarrow x^{2}-4x+4=4\Leftrightarrow x(x-4)=0\)
\(\Leftrightarrow x=0\) hoặc \(x=4\) cả 2 cái này đều TMĐK
Cách 2: \((\sqrt{x^2-4x+4}=2)\)
\(\Leftrightarrow \sqrt{(x-2)^2}=2\)
\(\Leftrightarrow \mid x-2\mid=2\)
Với \(x\geq 2\) thì :
\(x-2=2 \Leftrightarrow x=4\) (nhận)
Với \(x<2\) thì
\(-x-2=2\Leftrightarrow x=0\) (nhận)
Vậy \(S={0;4}\)
c) Cách 1: \(\sqrt{x^{2}-6x+9}=x-2\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x^{2}-6x+9=x^{2}-4x+4 \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix}x\geq 2 \\ x=\frac{5}{2} \end{matrix}\right.\)
Nghiệm TMĐK
Cách 2: \((\sqrt{x^2-6x+9}=x-2)\)
\(\Leftrightarrow \mid x-3\mid =x-2\)
Với \(x\geq 3\) thì
\(x-3=x-2\Leftrightarrow 0x=-1\) ( vô lý)
Với \(x<3\) thì
\(-x+3=x-2\Leftrightarrow -2x=-5 \Leftrightarrow x=\frac{5}{2}\)
Vậy \(S={\frac{5}{2}}\)
d) ĐKXĐ: Tự tìm
\(\sqrt{x^{2}+4}=\sqrt{2x+3}\Leftrightarrow x^{2}+4=2x+3\Leftrightarrow x^{2}-2x+1=0\Leftrightarrow (x-1)^{2}=0\)
\(\Leftrightarrow x=1\)
e) ĐKXĐ: \(x\geq \frac{3}{2}\)
\(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\Leftrightarrow \frac{2x-3}{x-1}=4\Rightarrow 2x-3=4x-4\Leftrightarrow x=\frac{1}{2}\)
Nghiệm không TMĐK.
Phương trình vô nghiệm.
f) ĐKXĐ: \(x\geq \frac{-15}{2}\)
\(x+\sqrt{2x+15}=0\Leftrightarrow 2x+2\sqrt{2x+15}=0\Leftrightarrow 2x+15+2\sqrt{2x+15}+1-16=0\)
\(\Leftrightarrow (\sqrt{2x+15}+1)^{2}-4^{2}=0\Leftrightarrow (\sqrt{2x+15}+5)(\sqrt{2x+15}-3)=0\)
\(\Leftrightarrow \sqrt{2x+15}-3=0\Leftrightarrow \sqrt{2x+15}=3\Leftrightarrow 2x+15=9\Leftrightarrow x=-3\) (TMĐK)
1.Ta co:
\(\text{ }\sqrt{5x^2+10x+9}=\sqrt{5\left(x+1\right)^2+4}\ge2\)
\(\sqrt{2x^2+4x+3}=\sqrt{2\left(x+1\right)^2+1}\ge1\)
\(\Rightarrow A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\ge2+1=3\)
Dau '=' xay ra khi \(x=-1\)
Vay \(A_{min}=3\)khi \(x=-1\)
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=2x-1+2x-3\)
\(=4x-4\)
Làm nốt