\(x^2-x=0\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đặt X là  CR

 ta có pt (18-X)*X=56

 X=4 m 

=.> cd=18-4=14 m

a) Xét ΔAFH và ΔADB có

\(\widehat{AFH}=\widehat{ADB}\left(=90^0\right)\)

\(\widehat{BAD}\) chung

Do đó: ΔAFH∼ΔADB(g-g)

b) Xét ΔBHF và ΔCHE có

\(\widehat{BFH}=\widehat{CEH}\left(=90^0\right)\)

\(\widehat{BHF}=\widehat{CHE}\)(đối đỉnh)

Do đó: ΔBHF∼ΔCHE(g-g)

\(\Rightarrow\frac{BH}{CH}=\frac{HF}{HE}=k\)(tỉ số đồng dạng)

hay \(BH\cdot HE=CH\cdot HF\)(đpcm)

Bài 1: Giải phương trình sau: a) \(3x-10=2\left(x-\frac{1}{2}\right)\) b) \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\) c) \(|0,5x-1|\)\(=3-2x\) Bài 2: Một ô tô đi từ A đến B với vận tốc 35km/h, lúc về ô tô chạy với vận tốc bằng 120% vận tốc lúc đi lên thời gian về ít hơn thời gian đi là 30 phút. Tính quãng đường AB? Bài 3: Cho tam giác nhọn ABC (AB<AC), tia phân giác của ∠BAC...
Đọc tiếp

Bài 1: Giải phương trình sau:

a) \(3x-10=2\left(x-\frac{1}{2}\right)\) b) \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\) c) \(|0,5x-1|\)\(=3-2x\)

Bài 2: Một ô tô đi từ A đến B với vận tốc 35km/h, lúc về ô tô chạy với vận tốc bằng 120% vận tốc lúc đi lên thời gian về ít hơn thời gian đi là 30 phút. Tính quãng đường AB?

Bài 3: Cho tam giác nhọn ABC (AB<AC), tia phân giác của ∠BAC cắt cạnh BC tại D. Trên nửa mặt phẳng chứa điểm A có bờ là đường thẳng BC, kẻ tia Dx sao cho ∠CDx = ∠BAC. Gọi E là giao điểm của tia Dx với cạnh AC

a) Chứng minh: △ABC ∼ △DEC

b) Chứng minh: DE = DB

c) Kẻ tia Cy sao cho ∠BCy = \(\frac{1}{2}\)∠BAC và tia này cắt AD tại F(Tia Cy và điểm A nằm trên hai nửa mặt phẳng đối nhau bờ BC). Chứng minh \(CF^2\)=AF.DF

1

Bài 1:

a) Ta có: \(3x-10=2\left(x-\frac{1}{2}\right)\)

\(\Leftrightarrow3x-10=2x-1\)

\(\Leftrightarrow3x-10-2x+1=0\)

\(\Leftrightarrow x-9=0\)

hay x=9

Vậy: S={9}

b) ĐKXĐ: \(x\notin\left\{0;2\right\}\)

Ta có: \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)

\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)

Suy ra: \(x^2+2x-x+2-2=0\)

\(\Leftrightarrow x^2+x=0\)

\(\Leftrightarrow x\cdot\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x+1=0\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\)

Vậy: S={-1}

c) Ta có: \(\left|0,5x-1\right|=3-2x\)(1)

*Trường hợp 1: \(0,5x-1\ge0\)

\(\Leftrightarrow0,5x\ge1\)

\(\Leftrightarrow x\ge2\)

(1)\(\Leftrightarrow0,5x-1=3-2x\)

\(\Leftrightarrow0,5x-1-3+2x=0\)

\(\Leftrightarrow2,5x-4=0\)

\(\Leftrightarrow2,5x=4\)

\(\Leftrightarrow x=1,6\)(loại)

*Trường hợp 2: x<2

(1)\(\Leftrightarrow1-0,5x=3-2x\)

\(\Leftrightarrow1-0,5x-3+2x=0\)

\(\Leftrightarrow-2+1,5x=0\)

\(\Leftrightarrow1,5x=2\)

\(\Leftrightarrow x=\frac{2}{1,5}=\frac{20}{15}=\frac{4}{3}\)(tm)

Vậy: \(S=\left\{\frac{4}{3}\right\}\)

Bài 2:

Đổi \(30'=\frac{1}{2}h\)

Gọi x(km) là độ dài quãng đường AB(x>0)

Vận tốc của ô tô lúc đi từ B về A là:

\(35\cdot120\%=35\cdot\frac{6}{5}=\frac{210}{5}=42\)(km/h)

Thời gian của xe ô tô lúc đi từ A đến B là:

\(\frac{x}{35}\left(h\right)\)

Thời gian của xe ô tô lúc từ B về A là:

\(\frac{x}{42}\left(h\right)\)

Vì thời gian về ít hơn thời gian đi \(\frac{1}{2}h\)

nên thời gian đi nhiều hơn thời gian về \(\frac{1}{2}h\)

Vì thời gian đi nhiều hơn thời gian về \(\frac{1}{2}h\)

nên ta có phương trình: \(\frac{x}{35}-\frac{x}{42}=\frac{1}{2}\)

\(\Leftrightarrow\frac{6x}{210}-\frac{5x}{210}=\frac{105}{210}\)

\(\Leftrightarrow x=105\)(tm)

Vậy: Độ dài của quãng đường AB là 105km

1 tháng 6 2020

cảm ơn ạ, bạn giúp mình bài 3 nữa được không?

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Qchứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)= \(\frac{1}{a}\)2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE3) cho tam giác ABC vuông...
Đọc tiếp

1) cho hình thoi ABCD cạnh a. Một đường thẳng đi qua C cắt các tia đôi của các tia BA và DA tHeo thứ tự ở I và Q

chứng minh \(\frac{1}{AI}\)+\(\frac{1}{AQ}\)\(\frac{1}{a}\)

2) cho tam giác ABC vuông tại A, ở ngoài tam giác ABC vẽ các tam giác ABH vuông cân tại B, tam giác ACK vuông cân tại C. D là giao điểm của AB và HC, E là giao điểm của AC và BK. chứng minh AD = AE

3) cho tam giác ABC vuông tại A, đường cao AH, phân giác góc ABC cắt đường cao AH tại E cắt AC tại D.

chứng minh rằng \(\frac{AE}{EH}=\frac{DC}{DA}\)

4) cho tam giác ABC, M là điểm thuộc cạnh BC. Chứng minh: AM.BC<AM.MC+AC.MB

5) cho tam giác ABC vuông tại A ( góc B lớn hơn góc C). lấy điểm D trên cạnh AC sao cho góc ABD bằng góc C.

chứng minh \(\frac{1}{BD^2}+\frac{1}{BC^2}=\frac{1}{AB^2}\)

giúp mình với :3. mình sắp thi rồi

p/s không biết làm bài nào chứ không phải lười đâu :((

0
13 tháng 5 2019

x x x x 32 m 24 m

Đây là hình bài trên..