Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: x # -5
\(\dfrac{2x-5}{x+5}=3\) ⇔ \(\dfrac{2x-5}{x+5}=\dfrac{3\left(x+5\right)}{x+5}\)
⇔ 2x - 5 = 3x + 15
⇔ 2x - 3x = 5 + 20
⇔ x = -20 thoả ĐKXĐ
Vậy tập hợp nghiệm S = {-20}
b) ĐKXĐ: x # 0
\(\dfrac{x^2-6}{x}=x+\dfrac{3}{2}\Leftrightarrow\dfrac{2\left(x^2+6\right)}{2x}=\dfrac{2x^2+3x}{2x}\)
Suy ra: 2x2 – 12 = 2x2 + 3x ⇔ 3x = -12 ⇔ x = -4 thoả x # 0
Vậy tập hợp nghiệm S = {-4}.
c) ĐKXĐ: x # 3
\(\dfrac{\left(x^2+2x\right)-\left(3x+6\right)}{x-3}=0\) ⇔ x(x + 2) - 3(x + 2) = 0
⇔ (x - 3)(x + 2) = 0 mà x # 3
⇔ x + 2 = 0
⇔ x = -2
Vậy tập hợp nghiệm S = {-2}
d) ĐKXĐ: x # \(-\dfrac{2}{3}\)
\(\dfrac{5}{3x+2}=2x-1\Leftrightarrow\dfrac{5}{3x+2}=\dfrac{\left(2x-1\right)\left(3x+2\right)}{3x+2}\)
⇔ 5 = (2x - 1)(3x + 2)
⇔ 6x2 – 3x + 4x – 2 – 5 = 0
⇔ 6x2 + x - 7 = 0
⇔ 6x2 - 6x + 7x - 7 = 0
⇔ 6x(x - 1) + 7(x - 1) = 0
⇔ (6x + 7)(x - 1) = 0
⇔ x = \(-\dfrac{7}{6}\) hoặc x = 1 thoả x # \(-\dfrac{2}{3}\)
Vậy tập nghiệm S = {1;\(-\dfrac{7}{6}\)}.
a)ĐKXĐ:x≠-5
Khử mẫu:2x-5=3(x+5) (1)
giải phương trình (1),ta được:
(1)⇔2x-5=3x+15
⇔2x-3x=15+5
⇔-x=20⇔x=-20(TM)
vậy phương trình đã cho có nghiệm x=-20
a: \(\Leftrightarrow1-x+3x+3=2x+3\)
=>2x+4=2x+3(vô lý)
b: \(\Leftrightarrow\left(x+2\right)^2-2x+3=x^2+10\)
\(\Leftrightarrow x^2+4x+4-2x+3=x^2+10\)
=>4x+7=10
hay x=3/4
d: \(\Leftrightarrow\left(-2x+5\right)\left(3x-1\right)+3\left(x-1\right)\left(x+1\right)=\left(x+2\right)\left(1-3x\right)\)
\(\Leftrightarrow-6x^2+2x+15x-5+3\left(x^2-1\right)=\left(x+2\right)\left(1-3x\right)\)
\(\Leftrightarrow-6x^2+17x-5+3x^2-3=x-3x^2+2-6x\)
\(\Leftrightarrow-3x^2+17x-8=-3x^2-5x+2\)
=>22x=10
hay x=5/11
a: \(\Leftrightarrow20x^2-12x+15x+5< 10x\left(2x+1\right)-30\)
\(\Leftrightarrow20x^2+3x+5< 20x^2+10x-30\)
=>3x+5<10x-30
=>-7x<-35
hay x>5
b: \(\Leftrightarrow4\left(5x-20\right)-6\left(2x^2+x\right)>4x\left(1-3x\right)-15x\)
\(\Leftrightarrow20x-80-12x^2-6x>4x-12x^2-15x\)
=>14x-80>-11x
=>25x>80
hay x>16/5
b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)
d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)
\(\Leftrightarrow x^2+14x+68=0\)
hay \(x\in\varnothing\)
a) \(\left(4x-10\right)\left(24+5x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{10}{4}=\dfrac{5}{2}\\x=-\dfrac{24}{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{24}{5};\dfrac{5}{2}\right\}\)
b) \(\left(3.5-7x\right)\left(0.1x+2.3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3.5-7x=0\\0.1x+2.3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3.5}{7}=\dfrac{1}{2}\\x=-\dfrac{2.3}{0.1}=-23\end{matrix}\right.\)
Vậy \(S=\left\{-23;\dfrac{1}{2}\right\}\)
a, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)
⇔ \(6x^2-5x+3=2x-9x+6x^2\)
⇔ \(6x^2-5x+3-6x^2+9x-2x=0\)
⇔ \(2x+3=0\)
⇔ \(2x=-3\)
⇔ \(x=-\dfrac{3}{2}\)
b, \(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)
⇔ \(\dfrac{20\left(x-4\right)}{4.10}-\dfrac{4\left(3+2x\right)}{4.10}=\dfrac{5x}{5}+\dfrac{1-x}{5}\)
⇔ \(\dfrac{20x-80}{40}-\dfrac{12+8x}{40}=\dfrac{5x+1-x}{5}\)
⇔ \(\dfrac{20x-80-12-8x}{40}=\dfrac{4x+1}{5}\)
⇔ \(\dfrac{12x-92}{40}-\dfrac{4x+1}{5}=0\)
⇔ \(\dfrac{12x-92}{40}-\dfrac{8\left(4x+1\right)}{40}=0\)
⇔ \(12x-92-8\left(4x+1\right)=0\)
⇔ 12x - 92 - 32x - 8 = 0
⇔ -100 - 20x = 0
⇔ 20x = -100
⇔ x = -100 : 20
⇔ x = -5
a. \(5x-10=0\)
\(\Leftrightarrow5x=10\)
\(\Leftrightarrow x=2\)
Vậy \(S=\left\{2\right\}\)
b. \(\dfrac{2}{x+1}-\dfrac{3}{x-2}=\dfrac{2x-6}{\left(x+1\right)\left(x-2\right)}\)
ĐKXĐ: \(x\ne-1;x\ne2\)
\(\Leftrightarrow\dfrac{2\left(x-2\right)}{x+1\left(x-2\right)}-\dfrac{3\left(x+1\right)}{x-2\left(x+1\right)}=\dfrac{2x-6}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow2\left(x-2\right)-3\left(x+1\right)=2x-6\)
\(\Leftrightarrow2x-4-3x-3=2x-6\)
\(\Leftrightarrow2x-4-3x-3-2x+6=0\)
\(\Leftrightarrow-3x-1=0\)
\(\Leftrightarrow-3x=1\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
Vậy \(S=\left\{-\dfrac{1}{3}\right\}\)
c) \(3x-5\ge-7\) (3)
\(\Leftrightarrow3x\ge-7+5\)
\(\Leftrightarrow3x\ge-2\)
\(\Leftrightarrow x\ge-\dfrac{2}{3}\)
Vậy tập nghiệm của BPT (3) là \(x\ge-\dfrac{2}{3}\)
d) \(3x-1=0\)
\(\Leftrightarrow3x=1\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
Vậy \(S=\left\{\dfrac{1}{3}\right\}\)
a. 5x - 10 = 0
⇔ 5x = 10
⇔ x = 2
Vậy S ={2}.
b.\(\dfrac{2}{x+1}\) - \(\dfrac{3}{x-2}\) = \(\dfrac{2x-6}{\left(x+1\right)\left(x-2\right)}\)
⇔\(\dfrac{2\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\) - \(\dfrac{3\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}\) = \(\dfrac{2x-6}{\left(x+1\right)\left(x-2\right)}\)
⇔ 2(x - 2) - 3(x+1) = 2x - 6
⇔ 2x - 4 - 3x -3 = 2x - 6
⇔ 2x - 2x - 3x = -6 + 4 + 3
⇔ -3x = 1
⇔ x = \(-\dfrac{1}{3}\)