K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2022

d) \(x^2-2x+1=0\)

⇔ \(\left(x-1\right)^2=0\)

⇒ \(x=1\)

h) \(x^2+6x-16=0\)

⇔ \(\left(x+3\right)^2=25\)

⇒ \(\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)

27 tháng 1 2022

mình giải theo cách lớp 9 bạn nhé 

d, \(x^2-2x+1=0\)

ta có : a + b + c = 1 - 2 + 1 = 0 

pt có 2 nghiệm \(x=1;x=\dfrac{c}{a}=1\)

Vậy x = 1 

h, \(x^2+6x-16=0\)

\(\Delta'=9-\left(-16\right)=25>0\)

Vậy pt luôn có 2 ngiệm pb 

\(x_1=-3-5=-8;x_2=-3+5=2\)

25 tháng 2 2019

\(a,4x^2-25=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)

\(b,2x^2+9x=0\)

\(\Leftrightarrow x\left(2x+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{9}{2}\end{matrix}\right.\)

\(c,x^2+x-30=0\)

\(\Leftrightarrow x^2+6x-5x-30=0\)

\(\Leftrightarrow x\left(x+6\right)-5\left(x+6\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)

\(d,2x^2-3x-5=0\)

\(\Leftrightarrow2x^2-5x+2x-5=0\)

\(\Leftrightarrow x\left(2x-5\right)+\left(2x-5\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{5}{2}\end{matrix}\right.\)

a,\(6x^2+x-5=0\)

\(\Delta=b^2-4ac=1^2-4.6.\left(-5\right)=1+120=121\)

Vì \(\Delta>0\)nên pt có 2 nghiệm phân biệt 

\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-1-\sqrt{121}}{2.6}=\frac{-1-11}{12}=\frac{-12}{12}=-1\)

\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-1+\sqrt{121}}{2.6}=\frac{-1+11}{12}=\frac{10}{12}=\frac{5}{6}\)

Vậy \(S=\left\{-1;\frac{5}{6}\right\}\)

b, \(3x^2+4x+2=0\)

\(\Delta=b^2-4ac=4^2-4.3.2=16-24=-8\)

Vì \(\Delta< 0\)nên pt vô nghiệm 

c, \(x^2-8x+16=0\)

\(\Delta=b^2-4ac=\left(-8\right)^2-4.1.16=64-64=0\)

Vì \(\Delta=0\)nên pt có nghiệm kép 

\(x_1=x_2=\frac{-b}{2a}=\frac{-b'}{a}=\frac{8}{4}=\frac{4}{2}=2\)

8 tháng 4 2020

a) \(6x^2+x-5=0\)

Ta có : \(\Delta=1+4.6.5=121>0\)

\(\Rightarrow\sqrt{\Delta}=11\)

Phương trình có hai nghiệm :

\(x_1=\frac{-1+11}{2.6}=\frac{5}{6}\)

\(x_2=\frac{-1-11}{2.6}=-1\)

b) \(3x^2+4x+2=0\)

Ta có : \(\Delta=4^2-4.3.2=-8< 0\)

Vậy phương trình vô nghiệm

c) \(x^2-8x+16=0\)

Ta có : \(\Delta=\left(-8\right)^2-4.1.16=0\)

Phương trình có nghiệm kép :

\(x_1=x_2=\frac{8}{2}=-4\)

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

21 tháng 4 2020

a) \(x^3_1+x_2^3=\left(x_1+x_2\right)\left(x^2_1-x_1x_2+x^2_2\right)=\left(x_1+x_2\right)\left(x^2_1+2x_1x_2-3x_1x_2+x^2_2\right).\)(1)

Áp dụng Đen-ta: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=1\end{cases}}\)

\(\left(x_1+x_2\right)^2=25.\)

<=> \(x^2_1+x_2^2+2x_1x_2=25.\)

(1) 5.(25-3)=5.22=110

Câu 2:

\(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=1\end{cases}}\)

ta có:\(x^2_1+x^2_2+2x_1x_2=25.\Rightarrow x^2_1+x^2_2=23\Rightarrow\left(x^2_1+x^2_2\right)^2=529.\)

\(\Leftrightarrow x^4_1+x^4_2+2x^2_1x^2_2=529.\)

\(\Rightarrow x^4_1+x^4_2=527\)

học tốt

1 tháng 4 2017

Đang làm dở dang mà tự nhiên máy thoát ra. Chép lại oải ghê.

Câu 1: Mình làm mẫu câu a thôi nhé.

a/ \(x^2-2\sqrt{3}x-6=0\)

( a = 1 ; b = -2\(\sqrt{3}\); c = -6 )

\(\Delta=b^2-4ac\)

    \(=\left(-2\sqrt{3}\right)^2-4.1.\left(-6\right)\)

    \(=36>0\)

\(\sqrt{\Delta}=\sqrt{36}=6\)

Pt có 2 nghiệm phân biệt:

\(x_1=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2\sqrt{3}-6}{2.1}=-3+\sqrt{3}\)

\(x_2=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2\sqrt{3}+6}{2.1}=3+\sqrt{3}\)

Vậy:..

Câu 2: \(x^2-2\left(2m+1\right)x+4m^2+2=0\)

( a = 1; b = -2(2m+1); c = 4m^2 + 2 )

\(\Delta=b^2-4ac\)

    \(=\left[-2\left(2m+1\right)\right]^2-4.1.\left(4m^2+2\right)\)

     \(=4\left(4m^2+4m+1\right)-16m^2-8\)

     \(=16m^2+16m+4-16m^2-8\)

     \(=16m-4\)

Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow16m-4>0\Leftrightarrow m>\frac{1}{4}\)

31 tháng 3 2017

ko hỉu

1 tháng 3 2020

b, \(\Delta'=b'^2-ac=\left[-\left(m-1\right)\right]^2-1.\left(-m-3\right)=m^2-2m+1+m+3\)

\(=m^2-m+4=m^2-m+\frac{1}{4}+\frac{15}{4}=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\)

Vậy pt (1) có 2 nghiệm x1,x2 với mọi m

Theo hệ thức vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\left(2\right)\\x_1x_2=-m-3\left(3\right)\end{cases}}\)

Ta có: \(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)

<=>\(4\left(m-1\right)^2-2\left(-m-3\right)=10\)

<=>\(4m^2-8m+4+2m+6=10\)

<=>\(4m^2-6m+10=10\Leftrightarrow2m\left(2m-3\right)=0\)

<=>\(\orbr{\begin{cases}m=0\\m=\frac{3}{2}\end{cases}}\)

c, Từ (2) => \(m=\frac{x_1+x_2+2}{2}\)

Thay m vào (3) ta có: \(x_1x_2=\frac{-x_1-x_2-2}{2}-3=\frac{-x_1-x_2-8}{2}\)

<=>\(2x_1x_2+x_1+x_2=-8\)

30 tháng 3 2021

a) Tại m = -2 thì PT trở thành:

\(x^2-2\left(-2-1\right)x+\left(-2\right)^2-1=0\)

\(\Leftrightarrow x^2+6x+3=0\)

\(\Delta^'=3^2-1\cdot3=6>0\)

Khi đó PT có 2 nghiệm phân biệt
\(x_1=-3+\sqrt{6}\) ; \(x_2=-3-\sqrt{6}\)

b) Theo hệ thức Viète ta có:

\(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(\frac{x_1+x_2}{2}+1\right)^2=m^2\\x_1x_2+1=m^2\end{cases}}\)

\(\Rightarrow\left(\frac{x_1+x_2}{2}+1\right)^2=x_1x_2+1\) là hệ thức liên hệ