\(⋮\)2                        ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

1: a) * = 0 ; 2; 4; 6; 8

b) * = 0 ; 5

c) * = 0

2: a = 2 ; 6. b = 0 ; 5

3: 105 + 35 = 100 000 + 35 = 100 035

Mà 100 035 \(⋮\)cho 5 và 9

=> 105 + 35 \(⋮\) cho 5 và 9

b) 105 + 98 = 100 000 + 98 = 100 098

Mà 100 098 \(⋮\)cho 2 và 9

=> 105 + 989 \(⋮\)cho 2 và 9

~ Chúc bạn học tốt ~

20 tháng 6 2017

Bài 1 :

a) * \(\in\){ 2, 4, 6, 8 } 

b) * \(\in\){ 0, 5 }

c) * \(\in\){ 0 }

Bài 2:

Để \(\overline{a97b}\)\(⋮\)5 thì b \(\in\){ 0, 5 }

*Nếu b = 0 thì ta có : \(\overline{a970}\)

Để \(\overline{a970}\)\(⋮\)9 thì a + 9 + 7 + 0 \(⋮\)9

                           hay a + 16 \(⋮\)9

→ a = 2

*Nếu b = 5 thì ta có : \(\overline{a975}\)

Để \(\overline{a975}\)\(⋮\)9 thì a + 9 + 7 + 5 \(⋮\)9

                           hay a + 21 \(⋮\)9

→ a = 6

Bài 3 :

a) \(10^5+35⋮9;5\)

Ta thấy : \(10^5\)= 100...0 ( 5 số 0 ) \(⋮\)5 ; 35 \(⋮\)5 → \(10^5+35⋮5\)

Ta thấy : \(10^5\)có 1 chữ số 1. Vậy \(10^5+35\)= 1 + 3 + 5 = 9 \(⋮\)9

Vậy, \(10^5+35⋮9;5\)

b) Ta thấy : \(10^5\)= 100...0 ( 5 số 0 ) \(⋮\)2

Ta thấy : \(10^5\)có 1 chữ số 1. Vậy \(10^5+98\)= 1 + 8 + 9 = 18 \(⋮\)9

Vậy,  Vậy \(10^5+98\) \(⋮\)9; 2

4 tháng 3 2018

Ta có : 

\(A=1+5+5^2+...+5^{32}\)

\(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{30}+5^{31}+5^{32}\right)\)

\(A=31+5^3\left(1+5+5^2\right)+...+5^{30}\left(1+5+5^2\right)\)

\(A=31+31.5^3+...+31.5^{30}\)

\(A=31\left(1+5^3+...+5^{30}\right)\) chia hết cho 31 

Vậy \(A\) chia hết cho 31

4 tháng 3 2018

\(a)\) Ta có : 

\(\frac{a}{b}< \frac{a+c}{b+c}\)

\(\Leftrightarrow\)\(a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow\)\(ab+ac< ab+bc\)

\(\Leftrightarrow\)\(ac< bc\)

\(\Leftrightarrow\)\(a< b\)

Mà \(a< b\) \(\Rightarrow\) \(\frac{a}{b}< 1\)

Vậy ...

18 tháng 11 2018

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\Rightarrow\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)

\(\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)

\(\Rightarrow x=165;y=20;z=25\)

25 tháng 10 2016

1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.

=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp

- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:

n.( n+1). ( n+2) \(⋮\)2.

- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.

Mà 2 và 3 là hai số nguyên tố cùng nhau.

Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).

2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.

=> 3n+3 + 3n+1 + 2n+3 + 2n+2

= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22

= 3n. (27+3) + 2n . ( 8+4)

= 6. ( 3n . 5 + 2n . 2)

= 6k với k = 3n . 5 + 2n+1

Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).

3) a) ( 6100 - 1) \(⋮\) 5

b) 2120 - 1110 chia hết cho cả 2 và 5

a) ( 6100 - 1) \(⋮\)5

=> Số 6100 có chữ số tận cùng là 6.

Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)

=> ( 6100 - 1) \(⋮\)5(đpcm).

b) 2120 - 1110 chia hết cho cả 2 và 5.

=> Số 2120 có chữ số tận cùng là 1.

Số 1110 có chữ số tận cùng cũng là 1.

Nên 2120 - 1110 là số có chữ số tận cùng là 0.

=> 2120 - 1110 chia hết cho 2 và 5(đpcm).

4) Chứng minh rằng:

a) ( 450+108+180) \(⋮\)9

b) ( 1350 +735+255) \(⋮\)5

c) ( 32624+2016) \(⋮\)4

a) ( 450+108+180) \(⋮\)9

=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9

Nên ( 450+108+180) \(⋮\)9.

b) ( 1350+735+255) \(⋮\)5

=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5

Nên ( 1350+735+255) \(⋮\)5.

c) ( 32624 + 2016) \(⋮\) 4

=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4

Nên ( 32624 + 2016) \(⋮\)4.

Đây là câu trả lời của mình, mình chúc bạn học tốt!

25 tháng 10 2016

uk

Bài 1:Tính tổng các số sau:a/ \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{2003x2004}\)b/20x15-20x13+20c/\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{2003x2005}\)Bài 2:Cho A=\(\frac{n-1}{n+4}\)a/Hãy tìm n nguyên để A là một phân số.b/Hãy tìm n nguyên để A là một số nguyên.Bài 3:A/Số nguyên a phải có điều kiện gì để ta có phân số:a/\(\frac{32}{a-1}\)b/\(\frac{a}{5a+30}\)B/Số nguyên a phải có điều kiện gì...
Đọc tiếp

Bài 1:Tính tổng các số sau:

a/ \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{2003x2004}\)

b/20x15-20x13+20

c/\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+...+\frac{1}{2003x2005}\)

Bài 2:Cho A=\(\frac{n-1}{n+4}\)

a/Hãy tìm n nguyên để A là một phân số.

b/Hãy tìm n nguyên để A là một số nguyên.

Bài 3:

A/Số nguyên a phải có điều kiện gì để ta có phân số:

a/\(\frac{32}{a-1}\)

b/\(\frac{a}{5a+30}\)

B/Số nguyên a phải có điều kiện gì để các phân số sau là số nguyên:

a/\(\frac{a+1}{3}\)

b/\(\frac{a-2}{5}\)

c/\(\frac{a-2}{a-4}\)

C/Tìm số nguyên x để các phân số sau là số nguyên:

a/\(\frac{13}{x-1}\)

b/\(\frac{x+3}{x-2}\)

Bài 4:Cho \(\frac{a}{b}=\frac{c}{d}\)

Hãy chứng minh  rằng \(\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2a+3d}\)

Bài 5:Tính nhanh:

a/465+[58+(-465)+(-38)]

b/217+[43+(-217)+(-23)]

Bài 6:Cho A=\(\frac{10^{2004}+1}{10^{2005}+1}\)và B=\(\frac{10^{2005}+1}{10^{2006}+1}\)

So sánh A và B

Bài 7:Tính giá trị các biểu thức sau:

a/A=(-1)x(-1)2x(-1)3x(-1)4x...x(-1)2011

b/B=70x\(\left(\frac{131313}{565656}+\frac{131313}{727272}+\frac{131313}{909090}\right)\)

 

0
Bài 1:a) 5(x + 2) - 4(x - 3) = 17b) xy + 2x - y = 2c) 2x + 9 \(⋮\)x - 1 (x là số nguyên)Bài 2:a) A = 9 + 99 + 999 + ... + 99...9 (có 50 chữ số 9)b) Tìm số nguyên x biết: 3x + 1 \(⋮\)2x - 5c) Cho A = 3 - 32 + 33 - 34 + ... + 32017Chứng tỏ 4A - 3 là một số chính phương.Bài 3:a) Cho A = 111...11 (có 2016 chữ số 1). Hỏi A là số nguyên tố hay hợp số?b) Cho B = 88...8 ( có n chữ số 8) - 9 + n        ( n\(\in\)N*)Chứng minh rằng...
Đọc tiếp

Bài 1:

a) 5(x + 2) - 4(x - 3) = 17

b) xy + 2x - y = 2

c) 2x + 9 \(⋮\)x - 1 (x là số nguyên)

Bài 2:

a) A = 9 + 99 + 999 + ... + 99...9 (có 50 chữ số 9)

b) Tìm số nguyên x biết: 3x + 1 \(⋮\)2x - 5

c) Cho A = 3 - 32 + 33 - 34 + ... + 32017

Chứng tỏ 4A - 3 là một số chính phương.

Bài 3:

a) Cho A = 111...11 (có 2016 chữ số 1). Hỏi A là số nguyên tố hay hợp số?

b) Cho B = 88...8 ( có n chữ số 8) - 9 + n        ( n\(\in\)N*)

Chứng minh rằng B\(⋮\)9

Bài 4:

a) Nếu chia 3698 và 736 cho cùng một số tự nhiên thì ta được số dư tương ứng là 26 và 56. Hỏi số chia phải bằng bao nhiêu?

b) Chứng minh rằng: Nếu abcd\(⋮\)101 thì ab - cd = 0

Bài 5:

a) Trên đường thẳng xy lấy một điểm O và hai điểm M, N sao cho OM = 2 cm, ON = 3 cm. Vẽ các điểm A, B trên đường thẳng xy sao cho điểm M là trung điểm của đoạn thẳng OA, N là truung điểm của đoạn OB. Tính AB?

b) Trên tia Ox lấy 2 điểm B và C sao cho C nằm giữa O và B. Gọi M và N lần lượt là trung điểm của OC và CB. Tính MN biết MN + OB = 9 cm.

Bài 6:

Tìm ƯCLN của \(\frac{n.\left(n+1\right)}{2}\)và 2n + 1 (n\(\in\)N*)

Hạn nộp đáp án là trưa ngày 2/1/2018.

 

0
23 tháng 10 2018

Lũy thừa có cơ số là 10 thì luôn có tận cùng là 0

=>Tổng các chữ số của lũy thừa có cơ số là 10 là 1

a)Tận cùng của 105 là 0 + với 35 sẽ cho 1 số có tận cùng là 5

Mà số có tận cùng là 5 thì chia hết cho 5

Xét tổng các chữ số của 105+35=1+3+5=9

Mà các số có tổng các chữ số bằng 9 thì chia hết cho 9

b)Tận cùng của 105+98 sẽ cho 1 số chẵn nên chia hết cho 2

Chia hết cho 9 làm tương tự như trên

c)Xét:Để chia hết cho 2,5 thì chữ số tận cùng phải bằng 0

Mà 105 có tận cùng bằng 0 và 1880 tận cùng bằng  0 =>105+1880 chia hết cho 2,5

Xét :Để chia hết cho 3,9 thì tổng các chữ số phải chia hết cho 3,9

Tổng các chữ số của:105+1880=1+1+8+8=18

18 chia hết cho 3,9

Vậy,...........

Bài 1 : Cho A = \(\frac{1}{2}\)+   \(\frac{1}{3}\) +  \(\frac{1}{4}\) + ....................... + \(\frac{1}{308}\) +  \(\frac{1}{309}\)                 B + \(\frac{308}{1}+\)\(\frac{307}{2}+\)\(\frac{306}{3}+\)..................  \(+\frac{3}{306}\)\(+\frac{2}{307}\)\(+\frac{1}{308}\)           Tính \(\frac{A}{B}\) Bài 2 :    1. Tìm số tự nhiên có 3 chữ số , biết rằng khi chia số đó cho 25 ; 28 ; 35 thì được các số dư lần lượt...
Đọc tiếp

Bài 1 : Cho A = \(\frac{1}{2}\)+   \(\frac{1}{3}\) +  \(\frac{1}{4}\) + ....................... + \(\frac{1}{308}\) +  \(\frac{1}{309}\)

                 B + \(\frac{308}{1}+\)\(\frac{307}{2}+\)\(\frac{306}{3}+\)..................  \(+\frac{3}{306}\)\(+\frac{2}{307}\)\(+\frac{1}{308}\)

           Tính \(\frac{A}{B}\)

 Bài 2 : 

   1. Tìm số tự nhiên có 3 chữ số , biết rằng khi chia số đó cho 25 ; 28 ; 35 thì được các số dư lần lượt là 5 ; 8 ; 15

   2. Cho a ; b là 2 số chính phương lẻ liên tiếp . Chứng minh rằng : (a-1) . (b-1) chia hết cho 192

Bài 3 : 

   1. Tìm số tự nhiên có 4 chữ số abcd biết nó thỏa mãn cả 3 điều kiện sau:

       a, c là chữ số tận cùng của số M = 5 + 52 + 53 + .......+ 5101

          b, abcd chia hết cho 25

       c, ab = a + b2

   2.Tìm số nguyên tố ab ( a> b>0) sao cho ab - ba là số chính phương


 

1
27 tháng 11 2016

2a)

Gọi số cần tìm là abc.

Để abc = a.

Theo đề bài, ta có: a chia 25 dư 5 => a - 20 chia hết cho 25

a chia 28 dư 8 => a - 20 chia hết cho 28

a chia 35 dư 15 => a - 20 chia hết cho 35

Vậy a - 20 \(\in\)BC (25, 28, 35)

25 = 52

28 = 22 . 7

35 = 5 . 7

BCNN (25, 28, 35) = 52 . 22 . 7 = 700

a - 20 \(\in\)BC (25, 28, 35)

mà BC (25, 28, 35) = B (700)

nên a - 20 \(\in\) B (700) = {0 ; 700 ; 1400 ; 2800 ; ...}

Vậy a \(\in\){680 ; 1380 ; 2780 ; ...}

mà a là số có ba chữ số.

=> abc = 680.

Vậy số tự nhiên cần tìm là 680.

4 tháng 7 2019

Em học đồng dư chưa?

Nếu học rồi thì có thể làm theo cách này:

a) \(6\equiv1\left(mod5\right)\)

=> \(6^{100}\equiv1^{100}\equiv1\left(mod5\right)\)

=> \(6^{100}-1\equiv1-1\equiv0\left(mod5\right)\)

=> \(6^{100}-1⋮5\)

Câu b, c làm tương tự

 Còn nếu chưa học kiến thức đồng dư

a) \(6^{100}\)có chữ số tận cùng là 6

=> \(6^{100}-1\)có chữ số tận cùng là 5

=> \(6^{100}-1\) chia hết cho 5

b) \(21^{20}\) có chữ số tận cùng là 1

\(11^{10}\)có chữ số tận cùng là 1

=> \(21^{20}-11^{10}\) có chữ số tận cùng là 0

=> \(21^{20}-11^{10}\) chia hết cho 2 và 5

c) \(10^{10}-1=100...00-1\)( có 10 chữ số 0)

\(=99..9\)

(có 9 chữ số 9)

=> \(10^{10}-1\) chia hết cho 9

Bài 1: tìm số tự nhiên x biết:a) (2x+7) \(⋮\)(x-1)b) 264 chia cho x dư 24, 363 chia cho x dư 43Bài 2: Tìm các giá trị của x,y để:a) 56x3y \(⋮\)2;5 và 9                                      b) 71x1y \(⋮\)45                                   c) x6345y  \(⋮\)3 và chia 5 dư 3Bài 3: Một khối học sinh khi xếp hàng 2, hàng 3, hàng 4, hàng 5 đều thiếu 1 người, nhưng xếp hàng 7 thì vừa đủ. Biết...
Đọc tiếp

Bài 1: tìm số tự nhiên x biết:

a) (2x+7) \(⋮\)(x-1)

b) 264 chia cho x dư 24, 363 chia cho x dư 43

Bài 2: Tìm các giá trị của x,y để:

a) 56x3y \(⋮\)2;5 và 9                                      b) 71x1y \(⋮\)45                                   c) x6345y  \(⋮\)3 và chia 5 dư 3

Bài 3: Một khối học sinh khi xếp hàng 2, hàng 3, hàng 4, hàng 5 đều thiếu 1 người, nhưng xếp hàng 7 thì vừa đủ. Biết số học sinh chưa đến 300. Tính số học sinh.

Bài 4: Tìm số tự nhieen a,b biết:

a) a+b=128 và ƯCLN(a,b) =16

b) ƯCLN(a,b) =6 và BCNN(a,b) =36

c) ab=13500 và ƯCLN(a,b)=15

Bài 5: Tìm số tự nhiên lớn nhất có 3 chữ số sao cho chia số đó cho 2, cho 3, cho 4, cho 5, cho 6 ta dc số dư theo thứ tự là 1,2,3,4,5.

Bài 6

a) Cho A=1028+8.CMR:A\(⋮\)72

b) Cho B= 3+ 33+35+....+31991.CMR: B\(⋮\)13 và B\(⋮\)41

Ai làm nhanh, đầy đủ, đúng, mình sẽ tk cho người đó 5 lần 1 ngày nhé.

2
6 tháng 11 2017

Gọi m (m ∈ N* và m < 300 ) là số học sinh của một khối.

Vì xếp hàng 2, hàng 3, hàng 4, hàng 5, hàng 6 đều thiếu 1 người nên:

(m + 1) ⋮ 2; (m + 1) ⋮ 3; (m + 1) ⋮ 4; (m + 1) ⋮ 5; (m + 1) ⋮ 6

Suy ra (m +1) ∈ BC(2; 3; 4; 5; 6) và m + 1 < 301

Ta có:          2 = 2

                     3 = 3

                     4=2^2

                      5 = 5

                      6 = 2.3

BCNN(2; 3; 4; 5; 6) = 22.3.5=60

BC(2; 3; 4; 5; 6) = {0;60;120;180;240;300;360;...}

Vì m + 1 < 301 nên m + 1 ∈ {60;120;180;240;300}

Suy ra: m ∈ {59;119;179;239;299}

Ta có: 59  ⋮̸ 7; 119 ⋮ 7; 179  ⋮̸ 7; 239  ⋮̸ 7; 299  ⋮̸ 7

Vậy khối  có 119 học sinh.



 

25 tháng 11 2017

s dài thế ko tự suy nghĩ được ạk