Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Ta có : 3a + 3b và a + 2b đều chia hết cho 3
=> ( 3a + 3b ) - ( a + 2b ) chia hết cho 3
=> 2a + b chia hết cho 3 ( đpcm )
Bài 2 :
Mình có sách có bài này nhưng mà chưa học nên cũng không hiểu . Nếu bạn cần thì cứ nói với mình mình sẽ giúp
hayyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
Ta có : 3a + 3b và a + 2b đều chia hết cho 3.
\(\Rightarrow\)( 3a + 3b ) - ( a + 2b ) chia hết cho 3.
\(\Rightarrow\)2a + b chia hết cho 3 ( đpcm )
Ta có : \(CM:\Rightarrow\)
\(\left(a+2b\right)+\left(b+2a\right)=3a+3b=3\left(a+b\right)⋮3\)
Mà \(\left(a+2b\right)⋮3\Rightarrow b+2a⋮3\)( 1 )
\(CM:\Leftarrow\)
\(\left(a+2b\right)+\left(b+2a\right)=3a+3b=3\left(a+b\right)⋮3\)
Mà \(b+2a⋮3\Rightarrow a+2b⋮3\)( 2 )
Từ ( 1 ) ; ( 2 ) \(\Rightarrow a+2b⋮3\Leftrightarrow b+2a⋮3\left(Đpcm\right)\)
Chúc bạn học tốt !!!
a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0 \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}
b) ta có 92n+1+1 = (92)n . 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0 \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}
cho mik mik giải nốt bài 2 cho
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
Theo đề bài ta có :
a+2b chia hết cho 3
mà ta có : 3(a+b) chia hết cho 3
⇒ 3(a+b) - (a+2b) chia hết cho 3
⇒ 3a + 3b - a -2b chia hết cho 3
⇒ 2a + b chia hết cho 3 (điều phải chứng minh)