Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2+1/3+1/4+...+1/63>1/31+1/31+...+1/31(62 số hạng 1/31)
hay 1/2+1/3+1/4+...+1/63>62 x 1/31
nên 1/2+1/3+1/4+...+1/63>2(dpcm)
các bạn giúp mình nhé, người làm nhanh và đúng sẽ được mình k nhé
Ta có: A = 1/2+1/3+1/4+...+1/62+1/63+1/64
A = 1+(1/2+1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+1/10+...+1/16)+...+(1/17+1/18+....+1/32)+(1/33+1/34+...+1/64)
Ta có: 1/2+1/3+1/4>1/2+1/4+1/4=1
1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=1/8.4=1/2
1/9 +1/10+...+1/16>1/16+1/16+...1/16=1/16.8=1/2
1/33+1/34+...+1/64>1/64+1/64+...+1/64=1/64.32=1/2
Vậy A > 4
thực ra nó rất là dễ. giờ mình mới phát hiện ra chứ bữa trước mình làm cách dài lắm
Ta có :
\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)\)
\(=\frac{25}{12}+\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)>\frac{25}{12}\)( đpcm )
bạn xét :1/2+1/3+1/4>1
vậy 1/5+1/6+1/7+1/8...>1
vậy nó >2
cách khác.
tính S62=31*[2*1/2-(62-1)*(-1/6)]>2
\(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}\)
\(>\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+...+\frac{1}{8}\right)+\left(\frac{1}{9}+...+\frac{1}{16}\right)\)
\(>\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+...+\frac{1}{8}\right)+\left(\frac{1}{16}+...+\frac{1}{16}\right)\)
\(=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)
bạn hãy áp dụng và like nha
Chứng minh rằng: 1 + 1/2 + 1/3 + 1/4 +...+ 1/63 < 6?
trước hết ta cần chứng minh bài toán 1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)<n/(k+1... với n>2,k thuộc N*
Thật vậy vì k thuộc N*nên ta có
k+1=k+1=>1/(k+1)= 1/(k+1)
k+2>k+1=>1/(k+2)<1/(k+1)
k+3>k+1=>1/(k+3)< 1/(k+1)
…
k+n>k+1=>1/(k+n)< 1/(k+1)
=>1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)<
1/(k+1)+ 1/(k+1)+…+ 1/(k+1) (có n số 1/(k+1) )
=>1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)
<n/(k+1)
…………………………
Áp dụng bài toán trên ta có
1=1
1/2+1/3
=1/(1+1)+1/(1+2)
<2/(1+1)=2/2=1
1/4+1/5+1/6+1/7
=1/(3+1)+1/(3+2)+1/(3+3)+1/(3+4)
<4/(3+1)=4/4=1
1 / 8 +1/9 ... +1/15
=1/(7+1)+1/(7+2)+…+1/(7+8)
<8/(7+1)=8/8=1
1/16+1/17+..+1/31
=1/(15+1)+1/(15+2)+….+1/(15+16)
<16/(15+1)=16/16=1
1/32+1/33+…+1/63
=1/(31=1)+1/(32+1)+…+1/(31+32)
<32/(31+1)=32/32=1
=>1 / 2 + 1 / 3+…+1/63<1+1+1+1+1+1
=>1 / 2 + 1 / 3+…+1/63<6 (đpcm)
S= (1/2 +1/4+1/6+….1/62)+ (1/ 3+1/5+1/7……+1/63)
ta thấy S1=1/2+1/4+….1/62 có 31 số
1/61 < 1/2, 1/62 < 1/4...... ==> s1 > 1/62+1/62 +….+1/62 (31 số ) = 31/62=1/2
S2= 1/3 +1/5+…+1/63 có 31 số
ta thấy 1/63< 1/3 , 1/63 < 1/5..... ====>S2 > 1/63+1/63…+1/63(31 số)
S2 > 31/ 63 =1/3
S1+s2 > 1/2 +1/3 = 5/6
1/2+1/3+1/4+...1/63>1/31+1/31+...+1/31(62 số hạng 1/31)
hay 1/2+1/3+1/4+...1/63>62x1/31
nên 1/2+1/3+1/4+...1/63>1 (dpcm)
#Hok_tốt