Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1:
a) ta có: 1033 là số chẵn, 2 là số chẵn
=> 1033 + 2 là số chẵn
=> 1033 + 2 chia hết cho 2
mặt khác 1033 + 1 = 100 ... 002 (32 chữ số 0)
có tổng chữ số là 1 + 0.32 + 2 = 3 chia hết cho 3
=> 1033 + 2 chia hết cho 3
vậy 1033 + 2 chia hết cho 2 và 3
b) ta có: 10299 là số chẵn, 8 là số chẵn
=> 10299 + 8 chia hết cho 2
mặt khác 10299 + 8 = 100 ... 008 (298 chữ số 0)
có tổng chữ số là 1 + 0.298 + 8 = 9 chia hết cho 9
=> 10299 + 8 chia hết cho 9
vậy 10299 + 8 chia hết cho 2 và 9
c) ta có: các số tự nhiên có tận cùng là 1 khi nâng lên lũy thừa cũng luôn có tận cùng là 1
815 + 4 = (.....1) + 4 = (.....5) chia hết cho 5
=> 815 + 4 chia hết cho 5
ok mk nha!!! 56577565687696234234233453454564654765756856852353453456464576576534543
câu 2:
ta có: A = 2 (1 + 2) + 23 (1 + 2) + ... + 299 (1 + 2)
A = 2.3 + 23.3 + ... + 299.3
=> A chia hết cho 3
mặt khác A chia hết cho 2 vì mọi số hạng của A đều chia hết cho 2
mà (2;3) = 1
=> A chia hết cho 2.3 = 6
=> A chia hết cho 6
chúc you học tốt!! ^^
ok mk lun nhé!! 54676767576585685713432532534645657567686787689798797845764564563465
Bài 2:
A=n(n+1)+1
Vì n;n+1 là hai số nguyên liên tiếp
nên n(n+1) chia hết cho 2
=>n(n+1)+1 không chia hết cho 2
hay A không chia hết cho 8
A=2+22+23+24+...+212
A=(2+22+23)+(24+25+26)+...+(210+211+212)
A=14.1+23.14+...+29.14
A=14(1+23+...+29)\(⋮\)7
Vậy A\(⋮\)7
\(A=2\left(1+2+2^2\right)+...+2^{10}\left(1+2+2^2\right)=7\cdot\left(2+...+2^{10}\right)⋮7\)
\(A=2+2^2+2^3+....+2^{12}\\ \Rightarrow A=\left(2+2^2+2^3\right)+.....+\left(2^{10}+2^{11}+2^{12}\right)\\ \Rightarrow A=2.\left(1+2+2^2\right)+....+2^{10}\left(1+2+2^2\right)\)
\(\Rightarrow A=2.7+....+2^{10}.7\\ \Rightarrow A=7\left(2+....+2^{10}\right)⋮7\)
Đề sai, tớ sửa lại
Ta có :
\(A=2+2^2+..............+2^{60}\)
\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...........+\left(2^{59}+2^{60}\right)\)
\(\Leftrightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+.........+2^{59}\left(1+2\right)\)
\(\Leftrightarrow A=2.3+2^3.3+...........+2^{59}.3\)
\(\Leftrightarrow A=3\left(2+2^2+..........+2^{59}\right)\)
\(\Leftrightarrow A⋮3\rightarrowđpcm\)
Lại có :
\(A=2+2^2+2^3+............+2^{60}\)
\(\Leftrightarrow A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..........+\left(2^{58}+2^{59}+2^{60}\right)\)
\(\Leftrightarrow A=2\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+..........+2^{59}\left(1+2+2^2\right)\)
\(\Leftrightarrow A=2.7+2^4.7+............+2^{58}.7\)
\(\Leftrightarrow A=7\left(2+2^3+..........+2^{58}\right)\)
\(\Leftrightarrow A⋮7\rightarrowđpcm\)
Ta tiếp tục có :
\(A=2+2^2+2^3+............+2^{60}\)
\(\Leftrightarrow A=\left(2+2^2+2^3+2^4\right)+..............+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(\Leftrightarrow A=2\left(1+2+2^2+2^3\right)+.............+2^{57}\left(1+2+2^2+2^3\right)\)
\(\Leftrightarrow A=2.15+............+2^{57}.15\)
\(\Leftrightarrow A=15\left(2+.........+2^{57}\right)\)
\(\Leftrightarrow A⋮15\rightarrowđpcm\)
B:6 so sánh
a, \(7^{18}\) + \(7^{19}\) và \(7^{20}\)
ta có : \(7^{18}\) + \(7^{19}\) = \(7^{37}\)
mà \(7^{37}\) > \(7^{12}\)
\(\Rightarrow\) \(7^{18}\) + \(7^{19}\) > \(7^{20}\)
Câu 1 :
a) Ta có
1033 là số chẵn ; 2 là số chắn
=> 1033+2 là số chẵn
=>1033+2 chia hết cho 2
Mặt khác \(10^{33}+2=100....002\) ( 32 số 0 )
Có tổng chữ số là \(1+0.32+2=3⋮3\)
=>1033+2 chia hết cho 3
b) Ta có
10299 là số chẵn ; 8 là số chắn
=> 10299+8 là số chẵn
=> 10299+8 chia hết cho 2
Mặt khác \(10^{299}+8=100....008\) ( 298 số 0 )
Có tổng chữ số là \(1+0.298+8=9⋮9\)
=>10299+8chia hết cho 9
c)
Ta có
Các số tự nhiên có tận cùng là 1 khi nâng lên lũy thừa cũng luôn có tận cùng là 1
\(\Rightarrow81^{45}+4=\left(\overline{......1}\right)+4=\left(\overline{......5}\right)⋮5\)
\(\Rightarrow81^{45}+4⋮5\)
Câu 2
Ta có
\(A=2\left(1+2\right)+2^3\left(1+2\right)+.....+2^{99}\left(1+2\right)\)
\(\Rightarrow A=2.3+2^3.3+.....+2^{99}.3\)
=> A chia hết cho 3
Mặt khác A chia hết cho 2 vì mọi số hạng của A đều chia hết cho 2
Mà (2;3)=1
=> \(A⋮2.3=6\)
=> A chia hết cho 6