Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)
\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3
3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)
4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)
a) \(\dfrac{x+1}{2}+\dfrac{3x-2}{3}=\dfrac{x-7}{12}\)
\(\Leftrightarrow\dfrac{6\left(x+1\right)+4\left(3x-2\right)}{12}=\dfrac{x-7}{12}\)
\(\Leftrightarrow6\left(x+1\right)+4\left(3x-2\right)=x-7\)
\(\Leftrightarrow6x+6+12x-8=x-7\)
\(\Leftrightarrow6x+12x-x=-7-6+8\)
\(\Leftrightarrow17x=-5\)
\(\Leftrightarrow x=\dfrac{-5}{17}\)
Vậy .........................
b) \(\dfrac{2x}{x-3}-\dfrac{5}{x+3}=\dfrac{x^2+21}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)-5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+21}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x\left(x+3\right)-5\left(x-3\right)=x^2+21\)
\(\Leftrightarrow2x^2+6x-5x+15=x^2+21\)
\(\Leftrightarrow2x^2-x^2+x+15-21=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2-2x+3x-6=0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=-3\left(l\right)\end{matrix}\right.\)
Vậy \(S=\left\{2\right\}\)
d) \(\left(x-4\right)\left(7x-3\right)-x^2+16=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x^2-16\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3-x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(6x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\6x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{6}\end{matrix}\right.\)
Vậy .........................
P/s: các câu còn lại tương tự, bn tự giải nha
a: \(A=4\cdot15^2-70^2=-4000\)
b: \(B=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+y+1\right)^2\)
\(=100^2=10000\)
c: \(C=b^2-3b+a^2+3a-2ab\)
\(=\left(a-b\right)^2+3\left(a-b\right)\)
\(=\left(a-b\right)\left(a-b+3\right)\)
\(=\left(-5\right)\cdot\left(-5+3\right)=\left(-5\right)\cdot\left(-2\right)=10\)
d: \(D=\left(x-y\right)^3+3xy\left(x-y\right)+3xy\)
\(=\left(-1\right)^3-3xy+3xy\)
=-1
\(2\cdot2^2\cdot2^3\cdot2^4\cdot\cdot\cdot2^x=32768\)
\(\Leftrightarrow2^{1+2+3+4+\cdot\cdot\cdot+x}=2^{15}\)
\(\Leftrightarrow1+2+3+4+..+x=15\)
\(\Leftrightarrow\)\(\frac{\left(1+x\right)x}{2}=15\)
\(\Leftrightarrow x\left(x+1\right)=30=5\left(5+1\right)\)
Vậy x=5
Bài 2:
Bậc của đơn thức là 2+5+3=10
Bài 3:
\(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\)
\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=5\)
+)TH1: \(x\ge\frac{1}{4}\) thì bt trở thành
\(2x-\frac{1}{2}=5\Leftrightarrow2x=\frac{11}{2}\Leftrightarrow x=\frac{11}{4}\left(tm\right)\)
+)TH2: \(x< \frac{1}{4}\) thì pt trở thành
\(2x-\frac{1}{2}=-5\Leftrightarrow2x=-\frac{9}{2}\Leftrightarrow x=-\frac{9}{4}\left(tm\right)\)
Vậy x={-9/4;11/4}
a. * \(\left|x+2\right|=x+2\) nếu \(x+2\ge0\Leftrightarrow x\ge-2\)
\(\left|x+2\right|=-x-2\) nếu \(x+2< 0\Leftrightarrow x< -2\)
* TH1: \(x+2=2x-10\Leftrightarrow x-2x=-10-2\)
\(\Leftrightarrow-x=-12\Leftrightarrow x=12\left(tm\right)\)
TH2: \(-x-2=2x-10\Leftrightarrow-x-2x=-10+2\)
\(\Leftrightarrow-3x=-8\Leftrightarrow x=\frac{8}{3}\left(ktm\right)\)
Vậy, \(S=\left\{12\right\}\)
b. * \(\left|-5x\right|=-5x\) nếu \(-5x\ge0\Leftrightarrow x\le0\)
\(\left|-5x\right|=5x\) nếu \(-5x< 0\Leftrightarrow x>0\)
* TH1: \(-5x+1=3x-9\Leftrightarrow-5x-3x=-9-1\)
\(\Leftrightarrow-8x=-10\Leftrightarrow x=\frac{5}{4}\left(ktm\right)\)
TH2: \(5x+1=3x-9\Leftrightarrow5x-3x=-9-1\)
\(\Leftrightarrow2x=-10\Leftrightarrow x=-5\left(ktm\right)\)
Vậy, \(S=\left\{\varnothing\right\}\)
a: (x-3)(x-2)<0
=>x-2>0 và x-3<0
=>2<x<3
b: \(\left(x+3\right)\left(x+4\right)\left(x^2+2\right)\ge0\)
\(\Leftrightarrow\left(x+3\right)\left(x+4\right)\ge0\)
=>x>=-3 hoặc x<=-4
c: \(\dfrac{x-1}{x-2}\ge0\)
nên \(\left[{}\begin{matrix}x-2>0\\x-1\le0\end{matrix}\right.\Leftrightarrow x\in(-\infty;1]\cup\left(2;+\infty\right)\)
d: \(\dfrac{x+3}{2-x}\ge0\)
\(\Leftrightarrow\dfrac{x+3}{x-2}\le0\)
hay \(x\in[-3;2)\)
\(a.P=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-32\)
\(P=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-32\)
Đặt : \(x^2+5x+5=t\) , ta có :
\(\left(t-1\right)\left(t+1\right)-32=t^2-1-32=t^2-33=\left(t-\sqrt{33}\right)\left(t+\sqrt{33}\right)\)
Thay : \(x^2+5x+5=t\) , ta có :
\(\left(x^2+5x+5-\sqrt{33}\right)\left(x^2+5x+5+\sqrt{33}\right)\)
\(b.Q=x^2-2xy+y^2+3x-3y+1=\left(x-y\right)^2-3\left(x-y\right)+1=\left(x-y\right)^2-2.\dfrac{3}{2}\left(x-y\right)+\dfrac{9}{4}+1-\dfrac{9}{4}=\left(x-y-\dfrac{3}{2}\right)^2-\dfrac{5}{4}=\left(x-y-\dfrac{3}{2}-\dfrac{\sqrt{5}}{2}\right)\left(x-y-\dfrac{3}{2}+\dfrac{\sqrt{5}}{2}\right)=\left(x-y-\dfrac{3+\sqrt{5}}{2}\right)\left(x-y+\dfrac{\sqrt{5}-3}{2}\right)\)
\(c.R=4x^2+\dfrac{1}{x^2}-20=4x^2-2.2x.\dfrac{1}{x}+\dfrac{1}{x^2}-16=\left(2x-\dfrac{1}{x}\right)^2-16=\left(2x-\dfrac{1}{x}-4\right)\left(2x-\dfrac{1}{x}+4\right)=\left(\dfrac{2x^2-1}{x}-4\right)\left(\dfrac{2x^2-1}{x}+4\right)\)
a) ĐKXĐ: x khác 0
\(x+\dfrac{5}{x}>0\)
\(\Leftrightarrow x^2+5>0\) ( luôn đúng)
Vậy bất pt vô số nghiệm ( loại x = 0)
d)
\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2-x-3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{-5}{8}\)
\(\Leftrightarrow2x+2-4x+4>-15\)
\(\Leftrightarrow-2x>-21\)
\(\Leftrightarrow x< \dfrac{21}{2}\)
Vậy....................
a)\(x+\dfrac{5}{x}>0\left(ĐKXĐ:x\ne0\right)\)
\(\Leftrightarrow\dfrac{x^2+5}{x}>0\)
Mà \(x^2+5>0\)
\(\Rightarrow x>0\)
d)\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)
\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{2x-2}{12}>\dfrac{-5}{8}\)
\(\Leftrightarrow\dfrac{-x+3}{12}>\dfrac{-5}{8}\)
\(\Leftrightarrow-x+3>-\dfrac{15}{2}\)
\(\Leftrightarrow-x>-\dfrac{21}{2}\)
\(\Leftrightarrow x< \dfrac{21}{2}\)
1) \(\left(x-3\right)\left(x-5\right)+44\)
\(=x^2-3x-5x+15+44\)
\(=x^2-8x+59\)
\(=x^2-2.x.4+4^2+43\)
\(=\left(x-4\right)^2+43\ge43>0\)
\(\rightarrowĐPCM.\)
2) \(x^2+y^2-8x+4y+31\)
\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)
\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)
\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)
\(\rightarrowĐPCM.\)
3)\(16x^2+6x+25\)
\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)
\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)
\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)
\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)
-> ĐPCM.
4) Tương tự câu 3)
5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)
\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)
\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)
-> ĐPCM.
6) Tương tự câu 5)
7) 8) 9) Tương tự câu 3).
Giải rõ giúp mình với