Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bạn ơi, đính chính lại nhé! Chỉ cần giải bài 1, 2a,2d và bài 3 là được rồi nhé, mình cảm ơn
1. Xét 32^9 và 18^13
ta có 32^9=(2^5)^9=2^45
18^13>16^13=(2^4)^13=2^52
vì 18^13>2^52>2^45 nên 18^13>32^9
2.
a, ta có A=10\(^{2008}\)+125=100...0+125(CÓ 2008 SỐ 0)=100..0125(CÓ 2005 CSO 0)
Vì 45=5.9 nên cần chứng minh A \(⋮5,⋮9\)
mà A có tcung là 5 nên A \(⋮\)5
A có tổng các cso là 9 nên A\(⋮\)9
vậy A \(⋮\)45
d, bn xem có sai đề ko nhé
3, A=(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)=(y+x+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)=1/(x+y+z)( AD tchat của dãy tỉ số = nhau)
x+y+z=1/2 hoặc -1/2
còn lai bn tự tính nhé
Bài 4
\(127^{23}< 128^{23}=\left(2^7\right)^{23}=2^{7.23}=2^{161}\)
\(513^{18}>512^{18}=\left(2^9\right)^{18}=2^{9.18}=2^{161}\)
Vì \(127^{23}< 2^{161}< 513^{18}\)nên \(127^{23}< 513^{18}\)
Khả năng của mình chỉ làm được 2 bài thôi. Các bạn thông cảm!
Bài 3
\(3^{n+2}-2^{n+2}+3^n-2^n=3^n.3^2-2^n.2^2+3^n-2^n.\)
\(=\left(3^n.9+3^n\right)-\left(2^n.4+2^n\right)=3^n.\left(9+1\right)-2^n\left(4+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1}.2.5=3^n.10-2^{n-1}.10=10\left(3^n-2^{n-1}\right).\)chia hết cho 10
3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0
nên số mũ chắc chắn bằng 0
mà số nào mũ 0 cũng bằng 1 nên A=1
5/ vì |2/3x-1/6|> hoặc = 0
nên A nhỏ nhất khi |2/3x-6|=0
=>A=-1/3
6/ =>14x=10y=>x=10/14y
23x:2y=23x-y=256=28
=>3x-y=8
=>3.10/4y-y=8
=>6,5y=8
=>y=16/13
=>x=10/14y=10/14.16/13=80/91
8/106-57=56.26-56.5=56(26-5)=59.56
có chứa thừa số 59 nên chia hết 59
4/ tính x
sau đó thế vào tinh y,z
Bài 1:
Cách 1:
Ta có : x + y = xy
<=> x = xy - y
<=> x = y(x - 1)
<=> x/y = x - 1
<
V=> x + y = x - 1
=> y = -1
Có y = -1 , ta có thể tính được x :
Ta có :
x + y = xy
<=> x - 1 = -x
<=> 2x = 1
=> x = 1/2
Vậy x = 1/2 ; y = -1
Cách 2 : Tham khảo nhé :
xy = x/y <=> x = 0 hoặc y² = 1
TH1: x = 0
=> 0 + y = 0 <=> y = 0 (loại)
TH2: y = 1
=> x + 1 = x <=> 1 = 0 (loại)
TH3: y = -1
=> x - 1 = -x <=> x = 1/2
=> x = 1/2 và y = -1
Cách 3 :
x+y > 0 và 1/x + 1/y = (x+y)/xy > 0 => xy > 0 mà x+y > 0 => x > 0, y > 0
đặt x = a/b ; y = c/d với a, b, c, d nguyên dương; (a,b) = 1 ; (c,d) = 1
Có:
x+y = a/b + c/d = (ad+bc)/bd = m
1/x+1/y = b/a + d/c = (ad+bc)/ac = n ; với m, n nguyên dương
=> { ad + bc = mbd (1*)
---- { ad + bc = nac (2*)
*-* (2*) => d + bc/a = nc => bc chia hết cho a
mà a và b nguyên tố cùng nhau (hay kí hiệu là (a,b) = 1) nên c chia hết cho a
*-* (2*) => ad/c + b = na => ad chia hết cho c
lại có (d,c) = 1 nên a chia hết cho c
từ hai điều trên ta có a = c
*-* (1*) => ad/b + c = md => ad chia hết cho b
mà (a,b) = 1 nên d chia hết cho b
*-* (1*) => a + bc/d = mb => bc chia hết cho d
cũng có (c,d) = 1 nên b chia hết cho d
từ 2 điều trên (b chia hết cho d và d chia hết cho b) => b = d
từ đây ta có kết luận: x = a/b = c/d = y
ta ghi lại giả thiết:
x+y = 2x = 2(a/b) = m (1**)
1/x + 1/y = 2/x = 2(b/a) = n (2**)
lấy (1**) * (2**) => 4 = mn ; với m, n nguyên dương ta có các khã năng là:
* m = n = 2 => 2x = 1 => x = 1
* { m = 1 ; n = 4 => { 2x = 1 ; 2/x = 4 => x = 1/2
* { m = 4 ; n = 1 => { 2x = 4 ; 2/x = 1 => x = 2
tóm lại có 3 cặp số hữu tỉ (x, y) thỏa mản là: (1,1) ; (1/2, 1/2) ; (2,2)
Bài 2:
a) M=[(2/193−3/386).193/17+33/34]:[(7/2001+11/4002).2001/25+9/2]
=[(4/386−3/386).193/17+33/34]:[(14/4002+11/4002).2001/25+9/2]
=(1/193.2.193/17+33/34):(25/2.2001.2001/25+9/2)
=(1/34+33/34):(1/2+9/2)
=1:5=1/5
1.
\(-3x^5y^4+3x^2y^3-7x^2y^3+5x^5y^4\)
\(=(-3x^5y^4+5x^5y^4)+(3x^2y^3-7x^2y^3)\)
\(=2x^5y^4-4x^2y^3\)
2.
\(\frac{1}{2}x^4y-\frac{3}{2}x^3y^4+\frac{5}{3}x^4y-x^3y^4\)
\(=(\frac{1}{2}x^4y+\frac{5}{3}x^4y)-(\frac{3}{2}x^3y^4+x^3y^4)\)
\(=\frac{13}{6}x^4y-\frac{5}{2}x^3y^4\)
3.
\(5x-7xy^2+3x-\frac{1}{2}xy^2\)
\(=(5x+3x)-(7xy^2+\frac{1}{2}xy^2)\)
\(=8x-\frac{15}{2}xy^2\)
4.
\(\frac{-1}{5}x^4y^3+\frac{3}{4}x^2y-\frac{1}{2}x^2y+x^4y^3\)
\(=(\frac{-1}{5}x^4y^3+x^4y^3)+(\frac{3}{4}x^2y-\frac{1}{2}x^2y)\)
\(=\frac{4}{5}x^4y^3+\frac{1}{4}x^2y\)
5.
\(\frac{7}{4}x^5y^7-\frac{3}{2}x^2y^6+\frac{1}{5}x^5y^7+\frac{2}{3}x^2y^6\)
\(=(\frac{7}{4}x^5y^7+\frac{1}{5}x^5y^7)+(-\frac{3}{2}x^2y^6+\frac{2}{3}x^2y^6)\)
\(=\frac{39}{20}x^5y^7-\frac{5}{6}x^2y^6\)
6.
\(\frac{1}{3}x^2y^5(-\frac{3}{5}x^3y)+x^5y^6=(\frac{1}{3}.\frac{-3}{5})(x^2.x^3)(y^5.y)+x^5y^6\)
\(=\frac{-1}{5}x^5y^6+x^5y^6=\frac{4}{5}x^5y^6\)
Ngo Phuc Duong câu ****