Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(\left\{\begin{matrix} x+2y+3z=4\\ \frac{1}{x}+\frac{1}{2y}+\frac{1}{3z}=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x+2y+3z=4\\ \frac{6yz+2xy+3xz}{6xyz}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x+2y+3z=4\\ 2xy+6yz+3xz=0\end{matrix}\right.\)
Do đó:
\((x+2y+3z)^2-2(2xy+6yz+3xz)=4^2-2.0=16\)
\(\Leftrightarrow x^2+4y^2+9z^2=16\)
\(\Leftrightarrow P=16\)
Ta có: \(x+2y+3x=0\Leftrightarrow x=-\left(2y+3z\right)\)
Lại có: \(2xy+6yz+3xz=0\Leftrightarrow x\left(2y+3z\right)+6yz=0\)
\(\Leftrightarrow-\left(2y+3z\right)\left(2y+3z\right)+6yz=0\Leftrightarrow-\left(2y+3z\right)^2+6yz=0\)
\(\Leftrightarrow\left(2y+3z\right)^2-6yz=0\Leftrightarrow4y^2+12yz+9z^2-6yz=0\)
\(\Leftrightarrow4y^2+6yz+9z^2=0\Leftrightarrow\left(2y+\dfrac{3z}{2}\right)^2+\dfrac{27z^2}{4}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2y+\dfrac{3z}{2}\right)^2=0\\\dfrac{27z^2}{4}=0\end{matrix}\right.\) \(\Rightarrow y=z=0\Rightarrow x=0\)
\(\Rightarrow S=\dfrac{\left(-1\right)^{2019}-1^{2017}+\left(-1\right)^{2015}}{1^{2018}+2.0^{2016}+0^{2014}+2}=\dfrac{-1-1+-1}{1+0+0+2}=\dfrac{-3}{3}=-1\)
Từ giả thiết \(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
Khi đó \(\frac{x}{1+x^2}=\frac{\frac{1}{x}}{\frac{1}{x^2}+1}=\frac{\frac{1}{x}}{\left(\frac{1}{x}+\frac{1}{y}\right)\left(\frac{1}{x}+\frac{1}{z}\right)}=\frac{xyz}{\left(x+y\right)\left(x+z\right)}\)
Tương tự cho 2 cái còn lại ta có: \(\frac{y}{1+y^2}=\frac{xyz}{\left(y+x\right)\left(y+z\right)}\)
\(\frac{z}{1+z^2}=\frac{xyz}{\left(z+x\right)\left(z+y\right)}\)
Suy ra \(VT=\frac{xyz\left(y+z\right)+2xyz\left(z+x\right)+3xyz\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{xyz\left(5x+4y+3z\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Đpcm
Gỉa thiết tương đương với \(xy^2+\frac{x^2}{z}+\frac{y}{z^2}=3\)
Đặt \(a=x;b=y;c=\frac{1}{z}\)khi đó bài toán quy về
\(ab^2+a^2c+c^2b=3\)Tìm GTLN của \(P=\frac{1}{a^4+b^4+c^4}\)
Sử dụng BĐT AM-GM ta có :
\(a^4+b^4+b^4+1\ge4\sqrt[4]{a^4b^4b^4}=4ab^2\)
Bằng cách chứng minh tương tự ta được :
\(b^4+c^4+c^4+1\ge4bc^2\); \(c^4+a^4+a^4+1\ge4ca^2\)
Cộng theo vế các bđt cùng chiều ta được :
\(3\left(a^4+b^4+c^4\right)+3\ge4\left(ab^2+bc^2+ca^2\right)=4.3=12\)
\(< =>a^4+b^4+c^4+1\ge\frac{12}{3}=4\)
\(< =>a^4+b^4+c^4\ge4-1=3\)
Vậy \(P\le\frac{1}{3}\)Dấu "=" xảy ra khi và chỉ khi \(a=b=c=1< =>x=y=z=1\)