Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: OD = OB + BD
OC=OA+AC
mà OA=OB; AC=BD
=>OD=OC
Xét 2 TG ODA và OCB;ta có:
OA-OB(gt); O:góc chung; OD=OC(cmt)
=>TG ODA= TG OCB(c.g.c)
=>AD=BC(2 cạnh tương ứng)
b. TG ODA=TG OCB=> góc C=góc D(2 góc tương ứng)
=>OAD=OBC(2 góc tương ứng)
Ta có: OAD+EAC=180
OBC+EBD=180
Từ (1) và (2)=> OAD+EAC=OBC+EBD=180
mà OAD=OBC(cmt)=>EAC=EBD
Xét 2 TG EAC và EBD; ta có:
AC=BD(gt); C=D(cmt); EAC=EBD(cmt)
=>TG EAC=TG EBD (g.c.g)
c. Vì TG EAC=TG EBD=> EA=EB(2 cạnh tương ứng)
Xét TG OBE và OAE, ta có:
OA=OB(gt); EA=EB(cmt); OE:cạnh chung
=>TG OBE=TG OAE(c.c.c)
=>BOE=EOA(2 cạnh tương ứng)
mà OE nằm giữa OA và OB=> OE là phân giác của góc xOy
Không pt đúng ko
x O y A B C D
Giải:
a) Ta có: AC = BD
OA = OB
\(\Rightarrow OA+AC=OB+BD\)
\(\Rightarrow OC=OD\) (*)
Xét \(\Delta OCB,\Delta ODA\) có:
\(OC=OD\) ( theo (*) )
\(\widehat{O}\): góc chung
\(OA=OB\left(gt\right)\)
\(\Rightarrow\Delta OCB=\Delta ODA\left(c-g-c\right)\)
b) Vì \(\Delta OCB=\Delta ODA\)
\(\Rightarrow\widehat{OCB}=\widehat{ODA}\) ( góc t/ứng )
hay \(\widehat{ACE}=\widehat{BDE}\)
\(\Rightarrow\widehat{OAD}=\widehat{ODA}\) ( góc t/ứng )
hay \(\widehat{CAE}=\widehat{DBE}\)
Xét \(\Delta EAC,\Delta EBD\) có:
\(\widehat{ACE}=\widehat{BDE}\) ( cmt )
\(AC=BD\left(gt\right)\)
\(\widehat{CAE}=\widehat{DBE}\) ( cmt )
\(\Rightarrow\Delta EAC=\Delta EBD\left(g-c-g\right)\)
c) Vì \(\Delta EAC=\Delta EBD\)
\(\Rightarrow CE=ED\) ( cạnh t/ứng )
Xét \(\Delta OCE,\Delta ODE\) có:
\(OC=OD\) ( theo phần a )
\(\widehat{OCB}=\widehat{ODE}\) ( theo phần b )
OE: cạnh chung
\(\Delta OCE=\Delta ODE\left(c-g-c\right)\)
\(\Rightarrow\widehat{COE}=\widehat{DOE}\) ( góc t/ứng )
\(\Rightarrow OE\) là tia phân giác của \(\widehat{xOy}\)
Vậy...
Câu 2: gợi ý:
A = ..
=> 3A - A = ...
=> 2A = ...
=> A = ( sử dụng t/c phân phối )
=> A = 1/2 - ...
=> A < 1/2
a) ∆OAD và ∆OCB có: OA= OC(gt)
ˆAODAOD^=ˆCOBCOB^(=ˆAA^)
OD=OB(gt)
Nên ∆OAD=∆OCB(c.g.c)
suy ra AD=BC.
b) ∆OAD=∆OCB(cmt)
Suy ra: ˆDD^= ˆBB^
ˆA1A1^=ˆC1C1^ => ˆA2A2^=ˆC2C2^
Do đó ∆AOE = ∆OCE(c .c.c)
suy ra: ˆOAEOAE^=ˆCOECOE^
vậy OE là tia phân giác của xOy.
b) ∆AEB= ∆CED(câu b) => EA=EC.
∆OAE và ∆OCE có: OA=OC(gt)
EA=EC(cmt)
OE là cạnh chung.
Nên ∆OAE=∆(OCE)(c .c.c)
suy ra: ˆAOEAOE^=ˆCOECOE^
vậy OE là tia phân giác của góc xOy.
xét tam giác OAD VÀ TAM GIÁC OBC CÓ
OD=OC (GT)
OB=OA(GT)
GÓC O CHUNG
=>TAM GIÁC ODA= TAM GIÁC BOC (CGC)
B,TA CÓ TAM GIÁC OD = TAM GIÁC OBC => GỐC DAO=COB
MÀ GỐC BDI + GOC IDy=180*
GOC IAC+ICx=180*=>GOC IAC= GOC IBD
C,TA CÓ GÓC IAC= GÓC IBD=>AC=BD
XET TAM GIAC IBD VA TAM GIAC IAC CO
GÓC BID= GÓC AIC(ĐỐI ĐỈNH)
BD=AC
GÓC I CHUNG
=>TAM GIÁC IBD=TAM GIC IAC(GCG)
Tham khảo nha.
Câu hỏi của nguyen van duy - Toán lớp 7 - Học toán với OnlineMath