\(\widehat{xAy}\) vuông . Trên tia phân giác At  của \(\w...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2019

ai làm nhanh nhất mình k cho

Bài 1:Cho góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB.Trên tia Ax lấy điểm C,trên tia By lấy điểm D sao cho AC=BDa) Chứng minh:AD=BCb) Gọi E là giao điểm AD và Bc.Chứng minh:\(\Delta EAC=\Delta EBD\)c) Chứng minh:OE là phân giác của góc xOyBài 2:Cho \(\Delta ABC\)có \(\widehat{A}=90^o\).Kẻ AH vuông góc với BC \(\left(H\varepsilon BC\right)\).Trên đường thẳng vuông góc với BC tại B lấy điểm D...
Đọc tiếp

Bài 1:

Cho góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB.Trên tia Ax lấy điểm C,trên tia By lấy điểm D sao cho AC=BD

a) Chứng minh:AD=BC

b) Gọi E là giao điểm AD và Bc.Chứng minh:\(\Delta EAC=\Delta EBD\)

c) Chứng minh:OE là phân giác của góc xOy

Bài 2:

Cho \(\Delta ABC\)có \(\widehat{A}=90^o\).Kẻ AH vuông góc với BC \(\left(H\varepsilon BC\right)\).Trên đường thẳng vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao  cho BD=AH

Chứng minh rằng:

a) \(\Delta AHB=\Delta DBH\)

b) AB//DH

c) Tính \(\widehat{ACB}\),biết \(\widehat{BAH=35^o}\)

Bài 3:

Cho \(\overline{\Delta}ABC\) vuông tại A có \(\overline{\Delta}B=30^o\)

a) Tính \(\Delta C\)

b) Vẽ tia phân giác của góc C cắt cạnh AB tại D

c) Trên cạnh CB lấy điểm M sao cho CM=CA.Chứng minh \(\Delta ACD=\Delta MCD\)

d) Qua C vẽ đường thẳng xy vuông góc CA.Từ A kẻ đường thẳng song song với CD cắt xy ở K.Chứng minh:AK=CD

e) Tính \(\DeltaẠKC\)

Bài 4:

Cho tam giác ABC vuông tại A,có AB=AC.Gọi K là trung điểm của cạnh BC

a) Chứng minh \(\Delta AKB=\Delta AKC\)và \(AK⊥BC\)

b) Từ C kẻ đường vuông góc với BC,nó cắt AB tại E.Chứng minh EC//AK

c) Chứng minh CE=CB

0
24 tháng 1 2018

ai giup minh voi

https://hoc24.vn/hoi-dap/question/886943.html

28 tháng 2 2019

o x y z A B C D M

28 tháng 2 2019

bÂY GIỜ CÂU 1 MÌNH ĐÃ LÀM ĐC NHƯ THẾ NÀY RỒI

1 tháng 7 2021

A B C K E D H

a) Xét tam giác AKB và tam giác AKE

có BK = KE (gt)

 \(\widehat{BKA}=\widehat{EKA}=90^0\)(gt)

AK : chung

=> tam giác AKB = tam giác AKE

b) Ta có: \(\widehat{BAK}=\widehat{ACB}\) (vì cùng phụ \(\widehat{KAC}\))

c) Ta có: Tam giác AKB = tam giác AKE (cmt)

=> \(\widehat{ABE}=\widehat{BEA}\) mà \(\widehat{BEA}=\widehat{DEC}\)(đối đỉnh)

=> \(\widehat{ABE}=\widehat{DEC}\)

Xét tam giác DEC vuông tại D có \(\widehat{DEC}+\widehat{ECD}=90^0\)

Xét tam giác ABK vuông tại K có \(\widehat{KBA}+\widehat{BAK}=90^0\)

 mà \(\widehat{ABK}=\widehat{DEC}\) (cmt) => \(\widehat{BAK}=\widehat{ECD}\)

mà \(\widehat{BAK}=\widehat{ACB}\)(cm câu b)

=> \(\widehat{ACB}=\widehat{BCD}\) => CB là p/giác của góc ACD

d) Xét tam giác AHC có CK và AD là 2 đườn cao cắt nhau tại E => E là trực tâm

=> HE là đường cao thứ 3 => HE vuông góc với AC

mà BA vuông góc với AC 

=> HE // AB