K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

A N C D M E B P G F

a) Gọi AM , BN , CP là các đường trung tuyến của \(\Delta ABC\) . Ta có GD = AG = 2GM và GD = GM + MD nên GM = MD

\(\Delta BMD=\Delta CMG\left(c.g.c\right)\)

\(\Rightarrow BD=CG=\dfrac{2}{3}CP\) (1)

Ta có \(BG=\dfrac{2}{3}BN\) (2)

\(GD=AG=\dfrac{2}{3}AM\) (3)

Từ (1) , (2) , (3) suy ra các cạnh của \(\Delta BGD=\dfrac{2}{3}\) các đường trung truyến của \(\Delta ABC\)

b) Gọi CE , DF là các đường trung tuyến của \(\Delta BGD\) . Từ đây tự chứng minh \(BM=\dfrac{1}{2}BC;GE=\dfrac{1}{2}AB;DF=AN=\dfrac{1}{2}AC\)

19 tháng 4 2017

G là trọng tâm của tam giác DEF với đường trung tuyến DH. Khẳng định đúng là:

GHDH=13GHDH=13GHDG=23GHDG=23

nên DHGHDH=323DH−GHDH=3−23

Tức là: GHDH=13GHDH=13

7 tháng 3 2019

GH/DH=1/3

Hình tự vẽ

a) Ta có : 

AG = GD . Mà GM = \(\frac{1}{2}\) AG 

=> GD = \(\frac{1}{2}\) AG 

Do AG = \(\frac{1}{3}\) AM

=> GD = \(\frac{2}{3}\) AM  (*)

Xét tứ giác GBDC ta có:

BM = MC ( gt ) (1)

GM= MD ( do GD = \(\frac{1}{2}\) AG ) (2)

Từ (1)(2) => Tứ giác GBDC là hình bình hành 

=> GC// và =BD ; BG // và =DC 

Xét tam giác ABD ta có:

AP = P B ( gt ) ( 3)

AG = GD ( gt ) (4)

Từ (3)(4) => PG là đường trung bình của tam giác ABD 

=> PG = \(\frac{1}{2}\)BD .Do BD = GC => PG=\(\frac{1}{2}\)GC 

Mà PG = \(\frac{1}{3}\)PC => GC =\(\frac{2}{3}\)PC(**)

Chứng mình tương tự . Xét tam giác ADC ( làm tường tự cái trên nha )

=> NG=\(\frac{2}{3}\)BN (***)

Từ (*)(**)(***) => Đpcm

b) Xét tam giác DBA ta có :

AG = GD ( gt )

BF=FD ( gt ) 

=> GF là đường trung bình bình của tam giác DAB 

=> GF = \(\frac{1}{2}\)AB( 5)

Ta có : DC = GB ( cm ở câu a )

Do BE = EG ; BG =\(\frac{2}{3}\)BN ( cm ở câu a)

=> EN = BG => EN= DC 

Mà BG// DC ( cm ở câu a) 

=> tứ giác ENCD là hình bình hành ( 1 cặp cạnh // và bằng nha )

=> DE=NC

Mà NC =\(\frac{1}{2}\)AC (6)

=> AN= NC 

Ta lại có BM=MC ( gt) => BI=\(\frac{1}{2}\)BC (7)

Từ (5)(6)(7) => Đpcm

Bài 2: 

a: GK/CK=2

b: AG=2GM

c: AM=3/2AG

17 tháng 4 2021
chịu mày giải cho tao đi
17 tháng 4 2021

ngta bài khó , ngta mới hỏi rồi lại hỏi lại ngta là sao ?

5 tháng 5 2017

Có điểm C' ?

5 tháng 5 2017

Hình như là điểm C đó cậu.Chắc mình gõ nhầm

3 tháng 4 2017

a) gọi AM,BN ,CH lần lượt là trung tuyến của tam giác ABC xuất phát từ các đỉnh A;B;C

Ta có BG=2/3BN( BN LÀ TRUNG TUYẾN CỦA TAM GIÁC ABC)

Ta có AG=2/3AM

=>GM=1/2AG

mà AG = GD

=> GM =MD= 1/2 GD

Xét tam giác GMC và DMB có :

GM=MD(cmt)

góc GMC=DMB (đối đỉnh)

BM=MC(gt)

=> 2 tam giác đó bằng nhau (c-g-c)

=>GC=BD (2-c-t-ứ) mà GC=2/3HC( vì CH là trung tuyến của tam giác ABC )=> BD=2/3CH

Ta có AG=2/3AM( AM là trung tuyến của tam giác ABC)

Mà AG=GD

=> GD=2/3AM

5 tháng 4 2016

) Gọi M là trung điểm BC. Lấy điểm D sao cho O là trung điểm CD

Xét Δ BCD có M là trung điểm BC, O là trung điểm CD  OM là đường trung bình của Δ BCD

 OM=12DB và OM // DB 

mà OM⊥BC ( OM là đường trung trực của BC )  DB⊥BC

mà AH⊥BC( AH là đường cao của ΔABC )  AH // DB

Xét ΔABH và ΔBAD có

HABˆ=DBAˆ( 2 góc so le trong do AH // DB )

AB chung

ABHˆ=BADˆ( 2 góc so le trong do AH // DB )


ΔABH=ΔBAD( g-c-g )

 AH = BD mà OM=12DB  OM=12AH 

 AH = 2 OM ( đpcm )

b) Gọi G' là giao điển của AM và OH, P là trung điểm G'H, Q là trung điểm G'A

Xét Δ AG'H có P là trung điểm G'H, Q là trung điểm G'A  PQ là đường trung bình của \large\Delta AG'H 

PQ=12AH và PQ // AH

Do PQ=12AH mà OM=12AH PQ = OM

Do AH // OM ( cùng ⊥BC ) mà PQ // AH PQ // OM

Xét ΔPQG′ và ΔOMG′ có

PQG′ˆ=OMG′ˆ( 2 góc so le trong do PQ // OM)

PQ = OM (c/m trên )

QPG′ˆ=MOG′ˆ ( 2 góc so le trong do PQ //OM )


 ΔPQG′=ΔOMG′( g-c-g )

 G'Q = G'M và G'P = G'O

Ta có G'Q = G'M mà G′Q=12G′A( Q là trung điểm G'A )  G′M=12G′Amà G'M + G'A = AM 

 G′A=23AM mà AM là trung tuyến của ΔABC

 G' là trọng tâm của ΔABC ,mà G là trọng tâm của ΔABC G′≡ G

mà G′∈OH G∈OH  O, H, G thẳng hàng ( đpcm )

Hên xui nghe bạn ^ ^

20 tháng 4 2016

giải bài cho mình đi