Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
b1
a) CM tam giác chứaHB và chứa HC = nhau
b) CM tam giác chứa 2 góc A = nhau
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C M N I H
có góc MAB = góc NAC = 90
góc MAB + gpcs BAC = góc MAC
góc NAC + góc BAC = góc BAN
=> góc MAC = góc BAN
xét tam giác MAC và tam giác BAN có :
MA = MB do tam giác MAB cân tại A (gt)
AN = AC do tam giác ANC cân tại A (gt)
=> tam giác MAC = tam giác BAN (c-g-c)
b, gọi MC cắt BA tại I và MC cắt BN tại E
xét tam giác MIA vuông tại A => góc AMI + góc MIA = 90
có góc AMI = góc IBE do tam giác MAC = tam giác BAN (Câu a)
góc MIA = góc BIE (đối đỉnh)
=> góc BIE + góc IBE = 90
=> tam giác BIE vuông tại E
=> MC _|_ BN
c,
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét ΔABD vuông tại A và ΔABC vuông tại A có
BA chung
AD=AC(gt)
Do đó: ΔABD=ΔABC(hai cạnh góc vuông)
Suy ra: BD=BC(hai cạnh tương ứng)
hay B cách đều hai đầu đoạn thẳng CD(Đpcm)
b) Ta có: ΔABD=ΔABC(cmt)
nên \(\widehat{DBA}=\widehat{CBA}\)(hai góc tương ứng)
hay \(\widehat{HBA}=\widehat{KBA}\)
Xét ΔBHA vuông tại H và ΔBKA vuông tại K có
AB chung
\(\widehat{HBA}=\widehat{KBA}\)(cmt)
Do đó: ΔBHA=ΔBKA(cạnh huyền-góc nhọn)
Suy ra: BH=BK(hai cạnh tương ứng)
Xét ΔBHK có BH=BK(cmt)
nên ΔBHK cân tại B(Định nghĩa tam giác cân)
c) Ta có: BH=BK(cmt)
nên B nằm trên đường trung trực của HK(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: AH=AK(ΔAHB=ΔAKB)
nên A nằm trên đường trung trực của HK(Tính chất đường trung trực của một đoạn thẳng)(2)
Ta có: BD=BC(cmt)
nên B nằm trên đường trung trực của DC(Tính chất đường trung trực của một đoạn thẳng)(3)
Ta có: AD=AC(gt)
nên A nằm trên đường trung trực của DC(Tính chất đường trung trực của một đoạn thẳng)(4)
Từ (1) và (2) suy ra BA là đường trung trực của HK
hay BA\(\perp\)HK(5)
Từ (3) và (4) suy ra BA là đường trung trực của DC
hay BA\(\perp\)DC(6)
Từ (5) và (6) suy ra HK//DC(Đpcm)