Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E M
a) Xét t/giác ADB và t/giác EDB
có: BD : chung
\(\widehat{ABD}=\widehat{EBD}\) (gt)
AB = BE (gt)
=> t/giác ADB = t/giác EDB (c.g.c)
b) Ta có: t/giác ADB = t/giác EDB (cmt)
=> \(\widehat{BAD}=\widehat{BED}\)(2 góc t/ứng)
Mà \(\widehat{BAD}=90^0\)=> \(\widehat{BED}=90^0\)
=> DE \(\perp\)BC
c) Xét t/giác AMD và t/giác ECD
có: AM = EC (gt)
\(\widehat{MAD}=\widehat{DEC}=90^0\)
AD = ED (vì t/giác ADB = t/giác EDB)
=> t/giác AMD = t/giác ECD (c.g.c)
=> MD = DC (2 cạnh t/ứng)
=> \(\widehat{ADM}=\widehat{EDC}\) (2 góc t/ứng)
Ta có: \(\widehat{ADE}+\widehat{EDC}=180^0\) (kề bù)
hay : \(\widehat{ADE}+\widehat{ADM}=180^0\)
=> M, D, E thẳng hàng
Giải:
Hình bạn tự vẽ nhé.
a) Ta có: AD là tia phân giác của góc BAC (gt)
=> Góc BAD = góc DAC
hay góc BAD = góc DAE
Xét tam giác ABD và tam giác ADE có:
AD cạnh chung
Góc BAD = góc DAE (chứng minh trên)
AB = AE (gt)
=> Tam giác ABD = tam giác AED (c.g.c) (đpcm)
b) Ta có: Góc DBM + ABD = 180o (2 góc kề bù)
=> Góc DBM = 180o - ABD = 180o - 90o = 90o
Lại có: Góc AED = góc ABD (vì tam giác ABD = tam giác AED)
Vì góc ABD = 90o nên góc AED = 90o
Mà góc CED + góc AED = 180o
=> Góc CED = 180o - 90o = 90o
=> Góc DBM = góc CED
Xét tam giác BDM và tam giác CDE có:
BD = DE (vì tam giác ABD = tam giác AED)
Góc DBM = góc CED (chứng minh trên)
BM = CE (gt)
=> Tam giác BDM = tam giác EDC (c.g.c)
=> DM = CD (2 cạnh tương ứng) (đpcm)
c) Ta có: tam giác BDM = tam giác EDC (chứng minh trên)
=> Góc BDM= góc CDE (2 góc tương ứng)
Mà góc CDE + góc BDE = 180o (2 góc kề bù)
=> Góc BDM + góc BDE = 180o
hay góc EDM = 180o
=> 3 điểm D, E, M thẳng hàng (đpcm)
Bài 1:
K D A H E B M C
a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)
\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A
=> đường trung tuyến AM đồng thời là đường cao
Vậy AM vuông góc BC
c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)
\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)
d) Ta có KB//AM(vì vuông góc với BM
\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)
Xét tam giác KDB và MDA (2 góc đối đỉnh)
\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)
\(\Rightarrow KD=DM\left(1\right)\)
Tam giác ABM vuông tại M có trung tuyến MD
Nên : MD=BD=AD(2)
Từ (1) và (2) ta có : KD=DM=DB=AD
Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)
Nên : Tam giác KAM vuông tại A
Tương tự : Tam giác MAH vuông tại A
Ta có: Qua1 điểm A thuộc AM có 2 đường KA và AH cùng vuông góc với AM
Nên : K,A,H thẳng thàng
Bài 2 :
x D A B C E y
a) Ta có tam giác DAB=tam giác CEB(c.g.c)
Do : DA=CB(gt)
BE=BA(gt)
\(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))
=> DA=EC
b) Do tam giác DAB=tam giác CEB(ở câu a)
=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)
Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC)
=> \(\widehat{BCE}+\widehat{BCD}=90^0\)
=> DA vuông góc với EC
a) Xét tam giác ADE và tam giác EDB có ( sai đề thì phải bạn bạn vẽ hình ra đi đáng lẽ là tam giác ABD và tam giác EBD)
BD là cạnh chung
góc ABD= góc EBD(gt)
AB=AE( gt)
=> tam giác ABD=tam giác EBD
vậy góc A bằng góc E ( hai góc tương ứng) = 90 độ
hay nói cách khác DE vuông góc với BC
b) từ tam giác ABD = tam giác EBD (cmt)
=> AD=DE(hai cạnh tương ứng)
Xét tam giác AMD và tam giác ECD có A=E=90 độ ( góc nha)
AD=DE(cmt)
AM=EC(gt)
=> tam giác AMD= tam giác ECD(cạnh huyền cạnh góc vuông)
=> MD=CD( hai cạnh tương ứng)
c) mk chưa làm đc tích mk đi đã rồi mk giải cho, bây giờ phải soạn anh đã
đợi mk tí nha bạn, mk làm xong nhớ k cho mk là đc