\(\in\)BC )

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải :

a) Xét \(\Delta HBA\)và \(\Delta ABC\)có :

\(\widehat{BHA}=\widehat{BAC}=90^o\)

\(\widehat{B}\)chung

\(\Rightarrow\Delta HBA~\Delta ABC\left(g.g\right)\)

phần B đề sai sửa đề AH2 = HB . HC 

Áp dụng hệ thức cạnh trong \(\Delta\)vuông ta có :

\(AH^2=HB.HC\)( đpcm )

17 tháng 8 2019

chuyên toán thcsLớp 8 chưa học các HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG phải đi c.m chứ

9 tháng 5 2018

Bài 1:

C A B E H D

Ta có: \(\widehat{ACB}+\widehat{ABC}=90^o\)

Xét: \(\Delta ABC\text{ và }\widehat{NBA}\)

      \(\widehat{CAB}=\widehat{ANB}=90^o\)

\(\Rightarrow\Delta ABC~\Delta AHB\)

b) \(\frac{AB}{NB}=\frac{AC}{NA}\)

\(\Leftrightarrow\frac{AB}{AC}=\frac{NB}{NA}\left(1\right)\)

Chứng minh tương tự: 

\(\Delta ABC~\Delta AHB\)

\(\frac{AN}{AB}-\frac{HC}{AC}\Rightarrow\frac{AB}{AC}=\frac{AN}{NC}\left(2\right)\)

\(\text{Từ (1) và (2) }\Rightarrow\frac{NB}{NA}=\frac{NA}{NC}\Rightarrow AB^2=BH.BC\left(đ\text{pcm}\right)\)

Xét tam giác vuông.

Áp dụng định lý Pi-ta-go, ta có: 

\(DB^2=AB^2+AD^2=6^2+8^2=100\)

\(\Rightarrow DB=\sqrt{100}=10\left(cm\right)\)

Bài 2: 

1 1 2 2 A B C D

a) Xét \(\Delta OAV\text{ và }\Delta OCD\)

Có: \(\widehat{AOB}=\widehat{COD}\left(đ^2\right)\)

     \(\widehat{A_1}=\widehat{C_1}\left(\text{so le}\right)\)

\(\Rightarrow\Delta OAB~\Delta OCD\)

\(\Rightarrow\frac{OB}{OD}=\frac{OA}{OC}\Rightarrow\frac{DO}{DB}=\frac{CO}{CA}\)

b) Ta có: \(AC^2-BD^2=DC^2-AB^2\)

\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)

\(\Delta\text{ vuông }ABC\left(\text{theo định lý Pi-ta-go}\right)\)

\(AC^2-DC^2=AD^2\left(1\right)\)

\(\Delta\text{ vuông }BDA\text{ có }\left(\text{theo định lý Pi-ta-go}\right)\)

\(BD^2-AB^2=AD^2\)

\(\text{Từ (1) và (2) }\Rightarrowđ\text{pcm}\)

9 tháng 5 2018

cảm ơn bạn nhé

3 tháng 8 2018

a) góc ABD = góc ABC

góc BAD= góc BCA vì cùng phụ với góc DAC

=> tam giác ABD đồng dạng với tam giác CBA

=> AB/CB = BD/BA => AB2= BD. BC

3 tháng 8 2018

em ơi em chị em thế nào rồi 

5 tháng 3 2020

A B C E D

Gọi BE là đường thẳng song song với AD; \(E\in AC\)

Vì \(BE//AD\Rightarrow\widehat{ABE}=\widehat{BAD}\)( hai góc so le trong )

Mà vì AD là tia phân giác của \(\widehat{BAC}\Rightarrow\widehat{BAD}=\widehat{DAC}=\frac{\widehat{BAC}}{2}=\frac{120^o}{2}=60^o\)

\(\Rightarrow\widehat{ABE}=60^o\)

Lại có : \(\widehat{BAC}+\widehat{BAE}=180^o\)\(E\in BC\))

\(\Rightarrow120^o+\widehat{BAE}=180^o\Rightarrow\widehat{BAE}=180^o-120^o=60^o\)

Xét \(\Delta ABE\)có : \(\widehat{BAE}=\widehat{ABE}=60^o\)

\(\Rightarrow\Delta ABE\)là tam giác đều ( tính chất + hệ quả tam giác cân )

\(\Rightarrow BE=AE=AB=6\)( Đơn vị đo )

Do \(BE//AD\Rightarrow\frac{AD}{BE}=\frac{AC}{EC}=\frac{12}{AC+AE}=\frac{12}{12+6}=\frac{12}{18}=\frac{2}{3}=\frac{AD}{6}\)

\(\Rightarrow AD=\frac{2\cdot6}{3}=4\)( đơn vị đo ) 

Một lần nữa tớ lại xin lỗi vì cái hình củ chuối ạ. Mong cậu xem phần mình chứng minh để dựng hình sao cho chuẩn với đề bài.