Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xté tứ giác AMIN có :
BMI=MAN=INA=900
=> Tứ giác AMIN là hình chữ nhật
b, Xét ΔABC
có : BI=IC ( gt)
IN // AM ( gt )
=> AN=NC
mà IN=ND
=> Tứ giác ADCI là hình bình hành (1)
mà INC = 900 (2) Từ (1) và (2) => ADCI là hình thoi
c, Kẻ IQ // BK (QϵCD)
ΔBKC có :
BI = IC (gt)
IQ // BK (cách dựng )
cm tương tự : DK=KQ
=> DK=KQ=QC
=> DK/DC = 1/3
A B C I M N D K a , Tứ giác ANMI có : góc MAN = góc ANI = góc AMI = 90o nên là hình chữ nhật .
→ AI = MN
b, ΔABC vuông tại A có đường trung tuyến AI ứng với cạnh huyền nên :
AI = IC
→ ΔAIC cân tại I
→ Góc IAN = góc ICN
Xét ΔAIN và ΔCIN có :
Góc INA = Góc INC = 90o
AI = IC
Góc IAN = góc ICN
→ Δ AIN = Δ CIN ( cạnh huyền - góc nhọn )
→ AN = NC
Ta có : IN = ND
AN = NC
→ Tứ giác AICD là hình bình hành mà có hai đường chéo ID và AC vuông góc với nhau nên là hinhg thoi .
c) GỌi P là giao điểm của BN và AI
Vì AICD là hình thoi(cmt)
=>AI//DC
=>^AIN=^CDN (cặp góc sole trong)
Xét ΔINP và ΔDNK có:
^PIN=^KDN(cmt)
IN=DN
^INP=^DNK(đ đ)
=> ΔINP=ΔDNK (g.c.g)
=> IP=DK
Vì AICD là hình thoi (cmt)
=> AI=DC
AN=NC
=>BN là trung tuyến
Xét ΔABC có: AI, BN là đường trung tuyến
mà BN cắt AI tại P
=>P là trọng tâm tam giác
=> IP/AI=1/3
hay DK/DC=1/3
a) Ta có : ^A=^M=^N=90*
=> Tứ giác AMIN là hình chữ nhật
Xét tam giác ACB có :
IB=IC (gt)
IN //AB (IN vuông góc vs CA ; CA vuông góc vs AC ; từ vuông góc đến // )
=> NC =NA (đg tb của tam giác )
b) Xét tứ giác AMIN có :
CA cắt ID tại N
Có : NI=ND (gt)
NC=NA(cmt)
=> AMIN là hbh
mà CA vuông góc vs ID
=> AMIN là hình thoi
1a/IM vuông góc AB=>AMI=90 do
IN vuông góc AC=>ANI=90 do
△ABC vuông tại A=>BAC=90 do
=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật
1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)
Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)
Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi
2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H
=> AM=MB VA EM=MH hay AB giao voi EH tai TD M
=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn
2b/Co AEBH la hcn=>EH=AB
+) Mà AB=AC=>EH=AC(1)
+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.
Co goc BAH=1/2 EAH ; góc AHE=1/2AHB
Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.
Mà 2 góc này ở vị trí SLT=> EH//AC(2)
Từ (1) va (2)=>tg AEHC la hbh
Bạn tự vẽ hình nhé!
c) Kẻ IH//BK ( K\(\in\) DC)
=> IH//NK
Xét \(\Delta\) BKC có:
IH//BK
BI = CI ( I là trung điểm của BC)
=> KH = CH (1)
Xét \(\Delta\) IDH có:
IH//NK
IN = DN ( D là điểm đối xứng của I qua N)
=> KH = KD (2)
Từ (1) và (2) suy ra :
KH = CH = KD = \(\frac{1}{2}\) DC
=> \(\frac{DK}{DC}\) = \(\frac{1}{3}\) ( đpcm)
XONG !!!
Hướng giải:
a) Hình chữ nhật : dấu hiệu tứ giác có 3 góc vuông là hình chữ nhật
b) C/m IN là đg tb của tam giác ABC => NA = NC
Tứ giác ADCI là hình thoi: dấu hiệu hai đg chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường
c) BC cắt DC tại C chứ. (hai đoạn này chỉ có 1 điểm chung)
*CHÚ Ý: phía trên ko phải là bài giải. Chỉ lả gợi ý giải.
Bài 2:
a) HE//MN ( _|_ KM) và M^ = 90o => hình thang vuông
b) Tương tự câu b bài 1
c) Thắc mắc về đề bài. Tương tự câu c bài 1