K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
29 tháng 9 2018
B H N M A C
MN là đường trung bình của \(\Delta ABC\Rightarrow MN//AC\Rightarrow\widehat{MNH}=\widehat{C}\)
HM là đường trung tuyến ứng với cạnh huyền AB của \(\Delta AHB\Rightarrow HM=MB=\frac{1}{2}AB\)
\(\Rightarrow\Delta HMB\)cân tại M \(\Rightarrow\widehat{MHB}=\widehat{B}=2\widehat{C}\)
Ta có: \(\widehat{MHB}=\widehat{HMN}+\widehat{MNH}\Rightarrow2\widehat{C}=\widehat{HMN}+\widehat{C}\Rightarrow\widehat{HMN}=\widehat{C}\)
Vậy \(\widehat{HMN}=\widehat{MHN}\left(=\widehat{C}\right)\) nên tam giác HMN cân
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
góc BAH chung
Do đó: ΔABH\(\sim\)ΔACK
b: Xét ΔAKH và ΔACB có
AK/AC=AH/AB
góc KAH chung
Do đó: ΔAKH\(\sim\)ΔACB
Suy ra: \(\widehat{AKH}=\widehat{ACB}=40^0\)