Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
15 câu hỏi hết thì sao tiến bộ được , tự làm đi nhé ,ko ai rảnh để làm cho b đâu
Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
=> BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE.
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
=>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
(Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/
(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
=> ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).
![](https://rs.olm.vn/images/avt/0.png?1311)
E B A C M D O
a) Xét tam giác CMA và tam giác BMD có :
\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)
=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)
=> ACBD là hình bình hành
=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm
b) Xét tam giác ABC và tam giác CDA có :
\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)
Chung AC
=> AD=BC
=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm
c) Xét tam giác ABC có :
M là trung điểm BC
A là trung điểm CE
Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm )
e) AM //BE => AD // BE
Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B
=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)
Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm
=> E,O , D thẳng hàng => đpcm
Bài 1:
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH là cạnh chung
Do đó: ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)
⇒BH=CH(hai cạnh tương ứng)
b) Áp dụng định lí pytago vào ΔABH vuông tại H, ta được
\(AB^2=AH^2+BH^2\)
hay \(AB=\sqrt{12^2+5^2}=13cm\)
Vậy: AB=13cm
c)
*Chứng minh BM=CN
Ta có: \(\widehat{ABC}=\widehat{MBD}\)(hai góc đối đỉnh)
\(\widehat{ACB}=\widehat{NCE}\)(hai góc đối đỉnh)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{MBD}=\widehat{NCE}\)
Xét ΔMBD vuông tại M và ΔNEC vuông tại N có
BD=CE(gt)
\(\widehat{MBD}=\widehat{NCE}\)(cmt)
Do đó: ΔMBD=ΔNEC(cạnh huyền-góc nhọn)
⇒BM=CN(hai cạnh tương ứng)
*Chứng minh ΔANM cân
Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{ABM}=\widehat{ACN}\)
Xét ΔABM và ΔACN có
BM=CN(cmt)
\(\widehat{ABM}=\widehat{ACN}\)(cmt)
AB=AC(ΔABC cân tại A)
Do đó: ΔABM=ΔACN(c-g-c)
⇒AM=AN(hai cạnh tương ứng)
Xét ΔAMN có AM=AN(cmt)
nên ΔAMN cân tại A(định nghĩa tam giác cân)(đpcm)
Bài 2:
a) Xét ΔABH và ΔACH có
AB=AC(ΔABC cân tại A)
\(\widehat{BAH}=\widehat{CAH}\)(do AH là tia phân giác của \(\widehat{BAC}\))
AH là cạnh chung
Do đó: ΔABH=ΔACH(c-g-c)
b) Ta có: ΔABH=ΔACH(cmt)
⇒\(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\frac{180^0}{2}=90^0\)
⇒AH⊥BC(đpcm)
c) Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH là cạnh chung
\(\widehat{DAH}=\widehat{EAH}\)(do AH là tia phân giác của \(\widehat{DAE}\))
Do đó: ΔADH=ΔAEH(cạnh huyền-góc nhọn)
⇒AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(định nghĩa tam giác cân)
⇒\(\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔADE cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
⇒\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{ADE}=\widehat{ABC}\)
mà \(\widehat{ADE}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên DE//BC(dấu hiệu nhận biết hai đường thẳng song song)(đpcm)
Bài 3:
a) Xét ΔABE và ΔDEC có
AE=ED(gt)
\(\widehat{AEB}=\widehat{CED}\)(hai góc đối đỉnh)
BE=EC(do E là trung điểm của BC)
Do đó: ΔABE=ΔDEC(c-g-c)
b) Ta có: ΔABE=ΔDEC(cmt)
⇒\(\widehat{BAE}=\widehat{EDC}\)(hai góc tương ứng)
mà \(\widehat{BAE}\) và \(\widehat{CDE}\) là hai góc ở vị trí so le trong
nên AB//CD(dấu hiệu nhận biết hai đường thẳng song song)
c) Xét ΔAEB và ΔAEC có
AB=AC(ΔABC cân tại A)
AE là cạnh chung
BE=EC(E là trung điểm của BC)
Do đó: ΔAEB=ΔAEC(c-c-c)
⇒\(\widehat{AEB}=\widehat{AEC}\)(hai góc tương ứng)
mà \(\widehat{AEB}+\widehat{AEC}=180^0\)(kề bù)
nên \(\widehat{AEB}=\widehat{AEC}=\frac{180^0}{2}=90^0\)
⇒AE⊥BC(đpcm)
d) Ta có: AB=AC(ΔABC cân tại A)
mà AB=DC(do ΔABE=ΔDEC)
nên AC=DC
Xét ΔACD có AC=DC(cmt)
nên ΔACD cân tại C(định nghĩa tam giác cân)
\(\Rightarrow\widehat{ACD}=180^0-2\cdot\widehat{ADC}\)(số đo của góc ở đỉnh trong ΔACD cân tại C)(1)
Thay \(\widehat{ADC}=45^0\) vào biểu thức (1), ta được
\(\widehat{ACD}=180^0-2\cdot45^0=90^0\)
Ta có: AB//CD(cmt)
\(\Rightarrow\widehat{BAC}+\widehat{ACD}=180^0\)(hai góc trong cùng phía)
hay \(\widehat{BAC}=180^0-\widehat{ACD}=180^0-90^0=90^0\)
Vậy: Khi ΔABC có thêm điều kiện \(\widehat{BAC}=90^0\) thì \(\widehat{ADC}=45^0\)