K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BÀI 1 : Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Đường nối tâm OO' cắt (O) ở B, cắt (O') ở C. DE là một tiếp tuyến chung ngoài của hai đường tròn (D thuộc (O), E thuộc (O')). Gọi M là giao điểm của BD và CE. Chứng minh : a) góc MDE vuông b) MA là tiếp tuyến chung của (O) và (O') c) MD . MB = ME . MC BÀI 2 : Cho (O;R) và ( I ; r) tiếp xúc ngoài tại A . Vẽ tiếp tuyến chung ngoài BC ( BC thuộc (O) ;...
Đọc tiếp

BÀI 1 : Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Đường nối tâm OO' cắt (O) ở B, cắt (O') ở C. DE là một tiếp tuyến chung ngoài của hai đường tròn (D thuộc (O), E thuộc (O')). Gọi M là giao điểm của BD và CE. Chứng minh :
a) góc MDE vuông
b) MA là tiếp tuyến chung của (O) và (O')
c) MD . MB = ME . MC

BÀI 2 : Cho (O;R) và ( I ; r) tiếp xúc ngoài tại A . Vẽ tiếp tuyến chung ngoài BC ( BC thuộc (O) ; C thuộc (I) ). Tiếp tuyến tại A có hai đường tròn cắt BC ở M. Chứng minh:
a) M là trung điểm BC
b) tam giác ABC và tam giác DMI vuông
c) Tính BC theo R và r

BÀI 3 : Cho (O:R) và (O`; r) tiếp xúc ngoài tại A . Gọi BC , DE là các tiếp tuyến chung ngoài của 2 đường tròn ( B,D thuộc (O) . Chứng minh :
a) BDEC là hình thang cân
b) Tính diện tích BDEC theo R và r

BÀI 4 : Cho nửa đường tròn tâm O , đường kính AB. VẼ (O`) đường kính OA . Qua A vẽ dây AC của (O) cắt (O`) ở M . Chứng kinh :
a) (O) và (O`) tiếp xúc nhau
b) O`M // OC
c) M là trung điểm của AC và OM // BC

2
Viết phương trình đường thẳng đi qua hai điểm sau: a) A 1;2 và B (-2;-1) b) M 2;1 và(- 2; -7). Bài 4 ) Tìm giao điểm của hai đường thẳng: a) (d 1 ): 5x -2y = c và (d 2 ) : x + by = 2, biết rằng (d 1 ) đi qua điểm A(5;-1) và (d 2 ) đi qua điểm B(– 7; 3) b) (d 1 ): ax + 2y = -3 và (d 2 ) : 3x -by = 5, biết rằng (d 1 ) đi qua điểm M(3;9) và (d 2 ) đi qua điểm N(– 1; 2) Bài 5 )Cho tam giác vuông tại A (AB<AC) nối tiếp đường...
Đọc tiếp

Viết phương trình đường thẳng đi qua hai điểm sau:
a) A 1;2 và B (-2;-1)
b) M 2;1 và(- 2; -7).
Bài 4 ) Tìm giao điểm của hai đường thẳng:
a) (d 1 ): 5x -2y = c và (d 2 ) : x + by = 2, biết rằng (d 1 ) đi qua điểm A(5;-1) và (d 2 ) đi qua điểm B(– 7; 3)
b) (d 1 ): ax + 2y = -3 và (d 2 ) : 3x -by = 5, biết rằng (d 1 ) đi qua điểm M(3;9) và (d 2 ) đi qua điểm N(– 1; 2)
Bài 5 )Cho tam giác vuông tại A (AB<AC) nối tiếp đường tròn (0) đường kính BC. Kẻ dây AD
vuông góc BC Gọi E là giao điểm của DB và AC. Qua E kẻ đường thẳng vuông góc với BC, cắt BC
tại H, cắt AB tại F.
a) Chứng minh tam giác EBF cân và tam giác HAF cân
b) Chứng minh: HA là tiếp tuyến của đường tròn (0)
Bài 6 )Từ điểm A ngoài đường tròn (O,R) với OA = 2R kẻ tiếp tuyến AB
a) Tính AB theo R
b) Kẻ dây BC vuông góc với OA tại H
Chứng minh: AC là tiếp tuyến của đường tròn (O)
a) CM: Bốn điểm A,B,O,C cùng thuộc một đường tròn, xác định tâm I của đường tròn đó.
b) Tia A0 cắt đường tròn (0) tại F (F I). Chứng minh BF là tiếp tuyến của đường tròn tâm I bán kính IBViết phương trình đường thẳng đi qua hai điểm sau:
a) A 1;2 và B 2; 1 .
b) M 2;1  và N2; 7 .
Bài 4 ) Tìm giao điểm của hai đường thẳng:
a) (d 1 ): 5x  2y = c và (d 2 ) : x + by = 2, biết rằng (d 1 ) đi qua điểm A(5;1) và (d 2 ) đi qua điểm B(– 7; 3)
b) (d 1 ): ax + 2y = 3 và (d 2 ) : 3x  by = 5, biết rằng (d 1 ) đi qua điểm M(3;9) và (d 2 ) đi qua điểm N(– 1; 2)
Bài 5 )Cho tam giác vuông tại A (AB<AC) nối tiếp đường tròn (0) đường kính BC. Kẻ dây AD
vuông góc BC Gọi E là giao điểm của DB và AC. Qua E kẻ đường thẳng vuông góc với BC, cắt BC
tại H, cắt AB tại F.
a) Chứng minh tam giác EBF cân và tam giác HAF cân
b) Chứng minh: HA là tiếp tuyến của đường tròn (0)
Bài 6 )Từ điểm A ngoài đường tròn (O,R) với OA = 2R kẻ tiếp tuyến AB
a) Tính AB theo R
b) Kẻ dây BC vuông góc với OA tại H
Chứng minh: AC là tiếp tuyến của đường tròn (O)
a) CM: Bốn điểm A,B,O,C cùng thuộc một đường tròn, xác định tâm I của đường tròn đó.
b) Tia A0 cắt đường tròn (0) tại F (F I). Chứng minh BF là tiếp tuyến của đường tròn tâm I bán kính IB .
b) M 2;1  và N2; 7 .
Bài 4 ) Tìm giao điểm của hai đường thẳng:
a) (d 1 ): 5x  2y = c và (d 2 ) : x + by = 2, biết rằng (d 1 ) đi qua điểm A(5;1) và (d 2 ) đi qua điểm B(– 7; 3)
b) (d 1 ): ax + 2y = 3 và (d 2 ) : 3x  by = 5, biết rằng (d 1 ) đi qua điểm M(3;9) và (d 2 ) đi qua điểm N(– 1; 2)
Bài 5 )Cho tam giác vuông tại A (AB<AC) nối tiếp đường tròn (0) đường kính BC. Kẻ dây AD
vuông góc BC Gọi E là giao điểm của DB và AC. Qua E kẻ đường thẳng vuông góc với BC, cắt BC
tại H, cắt AB tại F.
a) Chứng minh tam giác EBF cân và tam giác HAF cân
b) Chứng minh: HA là tiếp tuyến của đường tròn (0)
Bài 6 )Từ điểm A ngoài đường tròn (O,R) với OA = 2R kẻ tiếp tuyến AB
a) Tính AB theo R
b) Kẻ dây BC vuông góc với OA tại H
Chứng minh: AC là tiếp tuyến của đường tròn (O)
a) CM: Bốn điểm A,B,O,C cùng thuộc một đường tròn, xác định tâm I của đường tròn đó.
b) Tia A0 cắt đường tròn (0) tại F (F I). Chứng minh BF là tiếp tuyến của đường tròn tâm I bán kính IB

2
19 tháng 3 2020

mấy đấu kì lạ đều là dấu trừ

5 tháng 12 2020

Tham khảo:

Câu hỏi của tram le - Toán lớp 9 | Học trực tuyến

Bài 1 : Cho tam giác ABC nhọn . Các đường cao BE và CF cắt nhau tại H a) Chứng minh : Tức giác AEHF nội tiếp đường tròn b) Chứng minh : Tứ giác BFEC nội tiếp đường tròn c) Chứng minh : Tam giác AEF đồng dạng với tam giác ABC Bài 2 : Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A , B ). Lấy điểm D thuộc dây BC (D khác B, C). Tia AD cắt cung nhỏ BC tại điểm E, tia AC...
Đọc tiếp

Bài 1 : Cho tam giác ABC nhọn . Các đường cao BE và CF cắt nhau tại H
a) Chứng minh : Tức giác AEHF nội tiếp đường tròn
b) Chứng minh : Tứ giác BFEC nội tiếp đường tròn
c) Chứng minh : Tam giác AEF đồng dạng với tam giác ABC

Bài 2 : Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A , B ).
Lấy điểm D thuộc dây BC (D khác B, C). Tia AD cắt cung nhỏ BC tại điểm E, tia AC cắt tia BE
tại điểm F.
1) Chứng minh rằng FCDE là tứ giác nội tiếp đường tròn.
2) Chứng minh rằng DA.DE = DB.DC.
3) Gọi I là tâm đường tròn ngoại tiếp tứ giác FCDE, chứng minh rằng IC là tiếp tuyến của
đường tròn (O)

Bài 3 : Cho nửa đường tròn tâm O đường kính AB. Lấy điểm C thuộc nửa đường tròn và điểm
D nằm trên đoạn OA. Vẽ các tiếp tuyến Ax, By của nửa đường tròn. Đường thẳng qua C, vuông
góc với CD cắt cắt tiếp tuyên Ax, By lần lượt tại M và N.
1) Chứng minh các tứ giác ADCM và BDCN nội tiếp được đường tròn.
2) Chứng minh rằng : \(\widehat{MDN}\) ̂ = 90o
3) Gọi P là giao điểm của AC và DM, Q là giao điểm của BC và DN. Chứng minh rằng PQ
song song với AB.

0
13 tháng 4 2020

á heluu Chunn =))