K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Bài 2:

Tham khảo lời giải tại đây:

Câu hỏi của nguyen linh ngoc - Toán lớp 8 | Học trực tuyến

AH
Akai Haruma
Giáo viên
20 tháng 3 2020

Bài 1:
Violympic toán 8

Vì $AD\parallel BM$ nên :

$\widehat{B_1}=\widehat{A_1}$ (so le trong)

$\widehat{M_1}=\widehat{A_2}$ (đồng vị)

Mà $\widehat{A_1}=\widehat{A_2}$ nên $\widehat{B_1}=\widehat{M_1}$. Do đó tam giác $ABM$ cân tại $A$

$\Rightarrow AM=AB=2$

Áp dụng định lý Ta-let cho $AD\parallel BM$ ta có: $\frac{AD}{BM}=\frac{AC}{CM}=\frac{AC}{AC+AM}=\frac{3}{3+2}=\frac{3}{5}$

$\Rightarrow BM=\frac{5AD}{3}=\frac{5.1,2}{3}=2$ (cm)

$\Rightarrow MB=AB=AM=2$ nên tam giác $ABM$ là tam giác đều.

Do đó $\widehat{BAC}=\widehat{A_1}+\widehat{A_2}=\widehat{B_1}+\widehat{M_1}=60^0+60^0=120^0$

1 tháng 2 2021

Xét ΔADNΔADN và ΔMBAΔMBA có:

ˆDAN=ˆBMADAN^=BMA^ (AB//DC nên hai góc ở vị trí so le trong bằng nhau)

ˆAND=ˆMABAND^=MAB^ (hai góc ở vị trí so le trong)

⇒ΔADN∼ΔMBA⇒ΔADN∼ΔMBA (g.g)

⇒DNBA=DABM⇒DNBA=DABM (hai cạnh tương ứng)

⇒BM.DN=BA.DA⇒BM.DN=BA.DA mà BA,DABA,DA là hai cạnh của hình bình hành, hình bình hành cố định nên BM.DNBM.DN cố định (đpcm)

mình nghĩ dc câu a thôi

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0