K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2020

Hình bạn vào Thống kê hỏi đáp của mình để xem

Vì \(\Delta ABC\)cân tại A

=> \(AB=AC\)và \(\widehat{B}=\widehat{C}\)

Xét \(\Delta AHB\)và \(\Delta AHC\)

\(AB=AC\left(cmt\right)\)

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

=> \(\Delta AHB=\Delta AHC\)( cạnh huyền - góc nhọn )

=> \(HB=HC\)( hai cạnh tương ứng )

=> \(\widehat{BAH}=\widehat{CAH}\)( hai góc tương ứng )

A B C H

Ta có \(\Delta ABC\) cân tại A ( gt )

\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{ABH}=\widehat{ACH}\end{cases}}\) ( tính chất tam giác cân )

Xét \(\Delta ABH\) và \(\Delta ACH\) có :

       \(\widehat{AHB}=\widehat{AHC}\left(gt\right)\)

     \(AB=AC\left(cmt\right)\)

     \(\widehat{ABH}=\widehat{ACH}\left(cmt\right)\)

\(\Rightarrow\Delta AHB=\Delta AHC\) ( cạnh huyền - góc nhọn )

\(\Rightarrow HB=HC\)  ( 2 cạnh tương ứng )

      \(\widehat{BAH}=\widehat{CAH}\) ( 2 góc tương ứng )

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

b) Ta có: ΔABH=ΔACH(cmt)

nên BH=CH(hai cạnh tương ứng)

c) Xét ΔHIB vuông tại I và ΔHKC vuông tại K có

HB=HC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔHIB=ΔHKC(cạnh huyền-góc nhọn)

3 tháng 2 2017

theo đề bài ta có

AH Là dường cao của tam giác ABC

=>tam giác AHB và tam giác AHC vuông tại H

Xét tam giác ABC cân tại A ta có

AH Là dường cao kẻ từ dỉnh A

=>AH cũng là dường trung tuyến ứng cạnh BC

=> BH=HC

xét tam giác AHB (góc H =90 dộ )và tam giác AHC (góc H =90 dộ )

AB=AC(do tam giác ABC cân tại A

BH=HC(chứng minh trên)

=>tam giác AHB=tam giác AHC (cạnh huyền- cạnh góc vuông)

C2 theo dề bài ta có

AH vuông góc vs BC

=>Ah là dường cao cua tam giác ABc

=>tam giác AHB và tam giác AHc vuông tại h

xét tam giác AHB (H =90 độ)và tam giác AHC (h=90 dộ )

AH là cạnh chung

BH=HC(chứng minh như trên )

=>Tam giác AHB=tam giác AHC (hai cạnh góc vuông )

3 tháng 2 2017

ok bạn cảm ơn nha

10 tháng 4 2020

.  + vì tam giác ABC là tam giác cân

=> AB=AC ( hai cạnh bên bằng nhau)

Lại có: vì góc AHC bằng 90(gt) (1)

            Mà: AHBAHC= 180( hai góc kề bù)

           Từ (1) và (2) ta suy ra:

           AHB= 90và tam giác AHB là tam giác vuông

a) xét tam giác vuông ABH và tam giác ACH:

                  AB= AC ( cmt)

           Và AHBAHC= 90( cmt)

      => tam giác ABH= tam giác ACH( ch-gv)

      Do đó: BH = CH ( hai cạnh tương ứng)

     Vậy: H là trung điểm của BC ( đpcm)

( mình chỉ làm được câu a thoii, sorry bạn nhiều nha) 😍😘

CHÚC BẠN HỌC TỐT NHA!

12 tháng 4 2020

a) Xét \(\Delta AHB\)và \(\Delta AHC\)có :

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

\(AB=AC\)\((\Delta ABC\)cân \()\)

AH chung

\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-cgv\right)\)

\(\Rightarrow HB=HC\)( 2 cạnh tương ứng )

\(\Rightarrow\)H là trung điểm của BC

b) Xét \(\Delta MBH\)và \(\Delta NCH\)có :

\(BM=CN\left(gt\right)\)

\(\widehat{B}=\widehat{C}\)\((\Delta ABC\)cân \()\)

\(BH=HC\left(cmt\right)\)

\(\Rightarrow\Delta MBH=\Delta NCH\left(c.g.c\right)\)

\(\Rightarrow\widehat{BMH}=\widehat{CNH}\)( 2 góc tương ứng )

mà \(\widehat{BMH}=90^o\left(gt\right)\)

\(\Rightarrow\widehat{CNH}=90^o\)

\(\Rightarrow HN\perp AC\)

16 tháng 2 2016

theo dề bài ta có 

AH Là dường cao của tam giác ABC

=>tam giác AHB và tam giác AHC vuông tại H 

Xét tam giác ABC cân tại A ta có 

AH Là dường cao kẻ từ dỉnh A 

=>AH cũng là dường trung tuyến ứng cạnh BC 

=> BH=HC 

xét tam giác AHB (góc H =90 dộ )và tam giác AHC (góc H =90 dộ )

AB=AC(do tam giác ABC cân tại A

BH=HC(chứng minh trên)

=>tam giác AHB=tam giác AHC (cạnh huyền- cạnh góc vuông)

C2

theo dề bài ta có 

AH vuông góc vs BC

=>Ah là dường cao cua tam giác ABc

=>tam giác AHB và tam giác AHc vuông tại h 

xét tam giác AHB (H =90 độ)và tam giác AHC (h=90 dộ )

AH là cạnh chung 

BH=HC(chứng minh như trên )

=>Tam giác AHB=tam giác AHC (hai cạnh góc vuông )

16 tháng 2 2016
C1: Xét tg AHB và tg AHC có: AH chung AB=AC( tg ABC cân tại A) => tg AHB=tg AHC (cạnh huyền-cạnh góc vuông) C2: Xét tg AHB và tg AHC có: AB=AC(tgABC cân tại A) góc B= góc C (tg ABC cân tại A) => tg AHB=tg AHC (cạnh huyền-góc nhọn
7 tháng 3 2017

Bài 1 xét hai tam giác AHB và tam giác AHC có:

AC= AB (cân)

AH là cạnh chung

góc ABH= gó ACH 

=> hai tam giác bằng nhau theo trường hợp cạnh huyền góc nhọn

bài 2 

a) ta có tam giác ABC cân 

và AH là đường cao => AH cũng là đường trung tuyến của tam giác ABC

hoặc dùng kết quả 2 tam giác bằng nhau ở câu 1 để suy ra cũng dc

b)từ kết quả baì 1  suy ra hai góc bằng nhau

ta có tam giác ABH vuông tại H

HB=HC+1/2BC=5

sử dụng pytago

AH2  = AB2- BH2

22 tháng 1 2022

Bạn tự vẽ hình nhá.

a, Vì tam giác ABC cân tại A nên AB = AC và \(\widehat{ABC}=\widehat{ACB}\)

Xét tam giác AHB vuông tại H và tam giác AHC vuông tại H , có:

AB = AC (gt)

AH là cạnh chung

=> Tam giác AHB = Tam giác AHC ( cạnh huyền - cạnh góc vuông )

b, Vì Tam giác AHB = Tam giác AHC nên HB = HC ( hai cạnh tương ứng )

                                                                và \(\widehat{BAH}=\widehat{CAH}\) ( hai góc tương ứng )

c, Vì Tam giác AHB = Tam giác AHC nên \(\widehat{ABH}=\widehat{ACH}\) hay \(\widehat{KBH}=\widehat{ICH}\)

Xét tam giác HKB vuông tại K và tam giác HIC vuông tại I, có:

HB = HC ( cmt )

\(\widehat{KBH}=\widehat{ICH}\)

=> Tam giác HKB = Tam giác HIC ( cạnh huyền - góc nhọn )

22 tháng 1 2022

cảm ơn bạn nhé