K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2022

a) Ta có tam giác ABC cân tại A, AH là đường cao 

\(\Rightarrow\) AH là trung tuyến \(\Rightarrow\) BH = CH = 4 (cm)

Áp dụng định lý Pytago: \(AB^2=AH^2+BH^2\Rightarrow AH^2=AB^2-BH^2=5^2-5^4=9\)

\(\Rightarrow AH=3\left(cm\right)\)

Do G là trọng tâm tam giác \(\Rightarrow G=AH\cap BD\) và \(GH=\dfrac{1}{3}AH=1\left(cm\right)\)

Áp dụng định lý Pytago ta có:  

\(BG^2=BH^2+GH^2=4^2+1^2=17\Rightarrow BG=\sqrt{17}\left(cm\right)\)

b) Do \(CE\perp BC,AH\perp BC\Rightarrow CE//AH\)

Xét \(\Delta ADG\) và \(\Delta CDE\) có:

\(\widehat{ADG}=\widehat{CDE}\) (hai góc đối đỉnh)

\(AD=CD\) (do \(BD\) là trung tuyến)

\(\widehat{DAG}=\widehat{ECD}\) (hai góc so le trong)

\(\Rightarrow\Delta ADG=\Delta CDE\) (g.c.g) \(\Rightarrow AG=CE\) (hai cạnh tương ứng)

c) Xét \(\Delta ADE\) và \(\Delta CDG\) có:

\(DG=DE\) (hai cạnh tương ứng)

\(\widehat{ADE}=\widehat{CDG}\) (hai góc đối đỉnh)

\(AD=CD\)

\(\Rightarrow\Delta ADE=\Delta CDG\) (c.g.c) \(\Rightarrow\widehat{AED}=\widehat{CGD}\) mà 2 góc so le trong

\(\Rightarrow EA//CG\)

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai Ia) Chứng minh tam giác ABD = tam giác ACEb) Chứng minh I là trung điểm của BCc) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCHd) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CFBài 2: Tam giác ABC vuông tại A...
Đọc tiếp

Bài 1: Tam giác ABC cân tại A ( góc A > 90 độ). Hai đường cao BD và CE cắt nhau tại H. Tia AH cắt BC tai I

a) Chứng minh tam giác ABD = tam giác ACE

b) Chứng minh I là trung điểm của BC

c) Từ C kẻ đường thẳng d vuông góc với AC. d cắt đường thẳng AH tại F. Chứng minh CB là tia phân giác của góc FCH

d) Giả sử góc BAC = 60 độ, AB = 4cm. Tính khoảng cách từ B đến đường thẳng CF

Bài 2: Tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K

a) Tính độ dài cạnh BC

b) Chứng minh tam giác ABE = tam giác DBE. Suy ra BE là tia phân giác góc ABC

c)  Chứng minh AC = DK

d) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE tại M. Chứng minh tam giác AME cân

Các bạn làm hộ mình nha, mình cần gấp lắm

1

nhìu zữ giải hết chắc chết!!!

758768768978980

a: ΔABC cân tại A có AH là đường cao

nên H là trung điểm của BC

=>HB=HC=6/2=3cm

AH=căn 5^2-3^2=4cm

b: Gọi giao của BG với AC là M

=>M là trung điểm của AC

AG vuông góc BC

EC vuông góc BC

=>AG//CE

Xét ΔMAG và ΔMCE có

góc MAG=góc MCE

MA=MC

góc AMG=góc CME

=>ΔMAG=ΔMCE

=>AG=CE