Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong toán học, bất đẳng thức Cauchy là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm được phát biểu như sau:
Trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng, và trung bình cộng chỉ bằng trung bình nhân khi và chỉ khi n số đó bằng nhau.
- Với 2 số:
\(\frac{a+b}{2}\)\(\ge\)\(\sqrt{ab}\)
Đẳng thức xảy ra khi và chỉ khi \(a\)\(=\)\(b\)
- Với n số:
\(\frac{x_1+x_2+...+x_n}{n}\)\(\ge\)\(\sqrt[n]{x_1\times x_2\times...\times x_n}\)
Dấu "=" xảy ra khi và chỉ khi x1 = x2 = ... = xn
a) \(A=\frac{6n-1}{3n+1}=\frac{2\left(3n+1\right)-3}{3n+1}=2-\frac{3}{3n+1}\)
Để A đạt GTNN thì \(\frac{3}{3n-1}\) phải đạt giá trị lớn nhất
\(\Rightarrow\hept{\begin{cases}\frac{3}{3n-1}>0\\3n-1\text{ đạt giá trị nhỏ nhất}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3n-1>0\\3n\text{ đạt giá trị nhỏ nhất}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}n>\frac{1}{3}\\n\text{ đạt giá trị nhỏ nhất}\end{cases}}\)
Mà n thuộc Z => n = 1
\(\Rightarrow A_{min}=\frac{6.1-1}{3.1+1}=\frac{5}{4}\Leftrightarrow n=1\)
b) Điều kiện để A là phân số:
\(\hept{\begin{cases}6n-1\inℤ\\3n+1\inℤ\\3n+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}n\inℤ\\n\inℤ\\n\ne-\frac{1}{3}\end{cases}}}\)
Mà n thuộc Z => n luôn ≠ \(-\frac{1}{3}\)
Vậy để A là phân số thì n thuộc Z
c) A có giá trị nguyên <=> 6n - 1 chia hết cho 3n + 1
Có: 3n + 1 chia hết cho 3n + 1
=> 6n + 2 chia hết cho 3n + 1
=> 6n + 2 - (6n - 1) chia hết cho 3n + 1
=> 6n + 2 - 6n + 1 chia hết cho 3n + 1
=> 3 chia hết cho 3n + 1
=> 3n + 1 thuộc Ư(3) = {-3; -1; 1; 3}
=> 3n thuộc {-4; -2; 0; 2}
Mà n thuộc Z => 3n chia hết cho 3
=> 3n = 0
=> n = 0
Vậy để A thuộc Z thì n = 0
A B C D E K F
a, K;F là trung điểm của BD; BC (gt)
=> FK là đtb của tg BDC
=> FK // DC
mà DC // AB do ABCD là hình thang
=> FK//AB
b, K;E là trung điểm của BD; AD => KE là đtb của tg ABD
=> KE = 1/2 AB VÀ KE // AB
có AB = 4
=> ke = 2 cm
c, có KE // AB mà KF // AB
=> E;K;F thẳng hàng (tiên đề ơ clit)
\(b^2=a.c\)\(=>\frac{a}{b}=\frac{b}{c}\)
Đặt : \(\frac{a}{b}=\frac{b}{c}=k\)
Ta có : \(a=b.k\)
\(b=c.k\)
\(=>\)\(\frac{a}{c}=\frac{b.k}{c}=\frac{c.k+k}{c}=k^2\left(1\right)\)
\(\left(\frac{a+2012b}{b+2012c}\right)^2=\left(\frac{bk+2012b}{ck+2012c}\right)^2=\left(\frac{b\left(k+2012\right)}{c\left(k+2012\right)}\right)^2=\left(\frac{b}{c}\right)^2=k^2\left(2\right)\)
Từ (1) và (2) \(=>\frac{a}{c}=\left(\frac{a+2012b}{b+2012c}\right)^2\left(đpcm\right)\)
Hok tốt~
a/ Xét \(\Delta ABD\) và \(\Delta KBD\)
AB=BK (gt); BD chung
\(\widehat{ABD}=\widehat{KBD}\) (gt)
\(\Rightarrow\Delta ABD=\Delta KBD\left(c.g.c\right)\Rightarrow AD=DK\)
b/
\(\Delta ABD=\Delta KBD\Rightarrow\widehat{BAC}=\widehat{BKD}=90^o\Rightarrow DK\perp BC\)
\(AH\perp BC\left(gt\right)\)
=> AH//DK (cùng vuông góc với BC)
c/
Gọi M' là giao của BD với CE. Xét \(\Delta BCE\) có
\(EK\perp BC,CA\perp BE\)=> D là trực tâm của \(\Delta BCE\Rightarrow BM\perp CE\) (trong tam giác 3 đường cao đồng quy tại 1 điểm gọi là trực tâm của tam giác)
Mà BM là phân giác của \(\widehat{ABC}\Rightarrow\Delta BCE\) cân tại B (trong tam giác đường cao đồng thời là đường phân giác thì tg đó là tg cân)
=> BM' là đường trung tuyến (trong tg cân đường cao xp từ đỉnh đồng thời là đường trung tuyến của tam giác)
=> M' là trung điểm của CE, mà M cũng là trung điểm của CE => M trùng M' => B, D, M thẳng hàng
a)Xét \(\Delta ABI\)vuông tại A và \(\Delta KBI\)vuông tại K ,có:
\(\widehat{ABI}=\widehat{KBI}\)(do BI là phân giác của \(\widehat{ABC}\))
\(BI:chung\)
\(\Rightarrow\Delta ABI=\Delta KBI\left(ch.gn\right)\)
b)Vì \(\Delta ABI=\Delta KBI\left(ch.gn\right)\)
\(\Rightarrow\hept{\begin{cases}AB=KB\\AI=BI\end{cases}}\)(2 cạnh tương ứng)
\(\Rightarrow B,I\)thuộc đường trung trực của AK
hay BI là đường trung trực của AK
c)Vì BI là phân giác của \(\widehat{ABC}\)
\(\Rightarrow\)\(\widehat{ABI}=\widehat{KBI}=\frac{\widehat{ABC}}{2}=\frac{60^0}{2}=30^0=\widehat{ACB}\)(do \(\Delta ABC\)vuông tại A)
\(\Rightarrow\Delta BIC\)cân tại I
mà IK là đường cao
\(\Rightarrow IK\)là đường trung tuyến của \(\Delta BIC\)
\(\Rightarrowđpcm\)
//Sorry bạn nha .Hôm qua chỗ mình mưa to quá lại còn có sấm sét nữa nên mình không giải tiếp được cho bạn .
c)Vì \(\Delta BIC\)cân tại I nên IB=IC
Xét \(\Delta ABI\)vuông tại A ,có:
\(IB\)là cạnh huyền
\(\Rightarrow AB< IB=IC\)
d)Vì \(\Delta ABC\)vuông tại A \(\Rightarrow AB\perp AC\)
Xét \(\Delta BIC\),có:
BA,IK,CF là các đường cao
\(\Rightarrow BA,IK,CF\)đồng quy tại trực tâm của \(\Delta BIC\)
M P N D E H K
a) Xét tam giác PMD và tam giác EMD, ta có :
PMD = EMD ( gt )
MD chung
MP = ME ( gt )
=> Tam giác PMD bằng Tam giác EMD ( c . g . c )
b) Xét tam giác MPK và tam giác MEK, ta có :
PMD = EMD ( gt )
MK chung
MP = ME ( gt )
=> Tam giác MPK = Tam giác MEK ( c . g .c )
=> KP = KE ( 1 )
=> MKE = MKP = 900 ( 2 )
Từ 1 và 2 suy ra MDlaf đường trung trực đoạn thẳng PE
c) Ta có MDN = MDH { ( 1800 - PDE ) + MDE }
Xét tam giác MHD và tam giác MND, ta có :
HMD = NMD ( gt )
MD chung
MDN = MDH ( gt )
=> Tam giác MHD bằng tam giác MND ( g . c .g )
=> HD = DN
d)
bạn ơi hình vẽ đâu
ko thấy hình ra
mik có copy vô r