K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho hệ phương trình:

a) Giải hệ phương trình với m = -1.

b) Chứng tỏ rằng với m ≠ ±1 hệ luôn có nghiệm duy nhất nằm trên đường thẳng cố định.

Bài 2: Cho hệ phương trình

a) Tìm số nguyên m để hệ có nghiệm ( x,y) thoả mãn x > 0 và y < 0.

b) Tìm giá trị lớn nhất của biểu thức S= 2x- y với (x,y) là nghiệm của hệ phương trình đã cho.

Bài 3: Cho hệ phương trình:

Tìm m để hệ có nghiệm (x,y) sao cho H = x - y + 1 có giá trị nhỏ nhất.

Bài 4 : Giải và biện luận các  hệ phương trình sau:

Bài 5: Cho hệ phương trình:

a) Giải hệ phương trình khi m = -2

b) Tìm giá trị nguyên của m để hệ có nghiệm nguyên duy nhất.

Bài 6: Cho hệ phương trình :

           a)Chứng minh rằng hệ luôn luôn có nghiệm duy nhất với mọi a.

           b)Tỡm a để hệ có nghiệm (x,y) sao cho x<1 ; y<1.

Bài 4: Cho hệ phương trình :

           a). tìm giá trị nguyên của m để hệ có nghiệm (x;y) là số nguyên.

           b)Tìm m sao cho nghiệm của hệ thỏa mãn= 0,25.

Bài 5: Giải và biện luận hệ phương trình.:

Bài 6: Cho hệ phương trình :

a)Giải hệ phương trình khi m = 3                                 b)Tìm m để hệ có nghiệm x > 0, y > 0.

Bài 7: Cho hệ phương trình :

           Xác định m nguyên để hệ sau có nghiệm duy nhất (x;y) và x; y nguyên.

Bài 8: Xác định m để hệ phương trình : có nghiệm thỏa mãn x > 0, y > 0.

Bài 9: Cho hệ phương trình :

          a)Giải và biện luận hệ phương trình.

          b)Trong trường hợp hệ có nghiệm duy nhất. Hóy tỡm m để x + y > 1.

Bài 10: Cho hệ phương trình :

a).Giải hệ phương trình khi m =

           b)Xác định giá trị của m để hệ có nghiệm duy nhất (x;y) thỏa mãn điều kiện x > y

Bài 11: Cho hệ phương trình :

           Trong đó mZ ; m ≠ 1. Xác định m để hệ phương trình có nghiệm nguyên.

Bài 12: Cho hệ phương trình :

           a)Giải và biện luận hệ phương trình theo tham số m.

           b)Tìm các số nguyên m để hệ có nghiệm (x;y) là số nguyên.

           c) Tìm các giá trị của m để hệ phương trình có nghiệm dương duy nhất.

Bài 13: Cho hệ phương trình :

           a).Giải và biện luận hệ phương trình theo tham số m.

           b)Trong trường hợp có nghiệm duy nhất, tìm các giá trị của m để tích xy nhỏ nhất.

Bài 14: Cho hệ phương trỡnh :

           a)Biểu thị x và y theo z.

           b)Tìm GTNN và GTLN của thức A = x + y – z.

 

0
10 tháng 1 2016

a)Với m=2 thì hpt trở thành:

x-2y=5

2x-y=7

<=>

2x-4y=10

2x-y=7

<=>

-3y=3

2x-y=7

<=>

y=-1

x=3

b)\(\int^{\left(m-1\right)x-my=3m-1}_{2x-y=m+5}\Leftrightarrow\int^{x=\frac{3m+my-1}{m-1}}_{\frac{6m+2my-2}{m-1}-y=m+5}\Leftrightarrow\int^{x=\frac{3m+my-1}{m-1}}_{m^2+2m+my+y+3=0}\)

*m2+2m+my+y+3=0

<=>y.(m+1)=-m2-2m-3

*Với m=-1 =>PT vô nghiệm

*Với m khác -1 =>PT có nghiệm là: \(y=\frac{-m^2-2m-3}{m+1}=-m-1-\frac{2}{m+1}\)

 

bí tiếp

23 tháng 4 2020

a) Thay m=2 vào hpt, ta có \(\hept{\begin{cases}-x+2y=6\\6x-y=-4\end{cases}}\)

                                           \(\Leftrightarrow\hept{\begin{cases}y=6x+4\\-x+12x+8=6\end{cases}}\)

                                          \(\Leftrightarrow\hept{\begin{cases}11x=-2\\y=6x+4\end{cases}}\)

                                         \(\Leftrightarrow\hept{\begin{cases}x=\frac{-2}{11}\\y=\frac{32}{11}\end{cases}}\)

Vậy m=2 thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-2}{11};\frac{32}{11}\right)\)

b) Ta có \(\hept{\begin{cases}\left(m-3\right)x+2y=6\\y=3mx+4\end{cases}}\)

           \(\Leftrightarrow\hept{\begin{cases}y=3mx+4\left(1\right)\\mx-3x+6mx+8=6\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow\left(7m-3\right)x=-2\)

Hpt có nghiệm duy nhất \(\Leftrightarrow\)pt (2) có nghiệm duy nhất \(\Leftrightarrow7m-3\ne0\Leftrightarrow m\ne\frac{3}{7}\)(*)

Khi đó \(\left(2\right)\Leftrightarrow x=\frac{-2}{7m-3}\). Thay vào (1) \(\Leftrightarrow y=\frac{-6m}{7m-3}+4=\frac{-6m+28m-12}{7m-3}=\frac{22m-12}{7m-3}\)

Vậy \(m\ne\frac{3}{7}\)thì hpt có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-2}{7m-3};\frac{22m-12}{7m-3}\right)\)

Vì 2x+y>0\(\Rightarrow\frac{-4}{7m-3}+\frac{22m-12}{7m-3}>0\)

                \(\Leftrightarrow\frac{22m-16}{7m-3}>0\)

                \(\Leftrightarrow\orbr{\begin{cases}22m-16>0;7m-3>0\\22m-16< 0;7m-3< 0\end{cases}}\)

               \(\Leftrightarrow\orbr{\begin{cases}m>\frac{8}{11};m>\frac{3}{7}\\m< \frac{8}{11};m< \frac{3}{7}\end{cases}}\)

               \(\Leftrightarrow\orbr{\begin{cases}m>\frac{8}{11}\\m< \frac{3}{7}\end{cases}}\)

Kết hợp vs đk (*) \(\Rightarrow\orbr{\begin{cases}m>\frac{8}{11}\\m< \frac{3}{7}\end{cases}}\)thì 2x+y>0

5 tháng 3 2020

từ ptt 2

=>x=4-my

thay vào pt 1 ta đc:

m(4-my)+4y=10-m

=>4m-m^2y+4y=10-m

=> m^2y-4y+10-5m=0

no duy nhất x,y nên pt trên cs 1 no

=> đenta phẩy  =0

=> 4-y(-5m)=0

5+5ym=0

=>ym=0

=>y=0

vậy đpcm

5 tháng 3 2020

ak nhầm,

m^2y-4y+10-5m=0

=> denta =25-4y(-4y+10)=0

=>25+16y^2-40y=0

=>16y^2-40y+ 25=0

y=1.25

=> đpcm

vô lý

5 tháng 3 2020

\(\Leftrightarrow\hept{\begin{cases}\left(a+1\right)x-y=3\\y=a-ax\end{cases}}\)

Thay y=a-ax vào pt đầu,ta có

\(\left(a+1\right)x-a+ax=3\)

\(\Leftrightarrow ax+x-a+ax=3\)

\(\Leftrightarrow\)2ax+x=a+3

\(\Leftrightarrow\)x(2a+1)=a+3

Dể hpt có nghiệm duy nhất thì 2a+1\(\ne\)0

\(\Leftrightarrow\)a\(\ne\)\(\frac{-1}{2}\)

\(\Rightarrow\)\(x=\frac{a+3}{2a+1}\)

Mà y=a-ax

\(\Rightarrow y=\frac{a^2-2a}{2a+1}\)

Để x+y>0 thì\(\frac{a+3}{2a+1}+\frac{a^2-2a}{2a+1}=\frac{a^2-a+3}{2a+1}=\frac{\left(a-\frac{1}{2}\right)^2+\frac{11}{4}}{2a+1}\)

Vì tử số >0 nên để x+y>0 thì 2a+1>0

\(\Rightarrow a>-\frac{1}{2}\left(tm\right)\)

Vậy để hpt có nghiệm duy nhất tm x+y>0 thì a>\(-\frac{1}{2}\)