\(\dfrac{1}{2}\) ) ; f (0); f(-1)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2018

a) f(-\(\dfrac{1}{2}\))= - \(\dfrac{1}{2}\)+1=\(\dfrac{1}{2}\)

f(0)=0+1=1

f(-1)=-1+1=0

b) f(x)=0 <=> x+1=0 <=>x=-1

f(x)=2 <=> x+1=2 <=>x=1

c) với điểm A(\(\dfrac{3}{4}\);\(\dfrac{-1}{2}\)) thay vào hàm số ta có -2*\(\dfrac{3}{4}\)+1=\(\dfrac{-1}{2}\)=\(\dfrac{-1}{2}\)

=> điểm A có thuộc đồ thị hàm số trên

làm tương tự vs các điểm còn lại nha bạn !

14 tháng 12 2017

Giúp mình với !!!!!!!!!!!!!!!!

hihihihihihihihihihi

25 tháng 12 2020

c ơi cái này là toán 7, thi học kì 1 mà, bọn em cũng đn ôn đề này á

22 tháng 12 2018

vui giúp mình với nha mọi người

28 tháng 12 2018

Bài 1 : Đồ thị đi qua điểm M(4;-3) \(\Rightarrow\) y=-3 x=4. Ta được:

\(-3=4a+b\)

Đồ thị song song với đường d \(\Rightarrow\) \(a=a'=-\dfrac{2}{3}\) Ta được:

\(-3=4.-\dfrac{2}{3}+b\) \(\Rightarrow\) \(b=-\dfrac{1}{3}\)

Vậy: \(a=-\dfrac{2}{3};b=-\dfrac{1}{3}\)

b) (P) đi qua 3 điểm A B O, thay tất cả vào (P), ta được hpt:

\(\hept{\begin{cases}a+b+c=1\\a-b-c=-3\\0+0+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=2\\c=0\end{cases}}}\)

Bài 2 : Mình ko biết vẽ trên này, bạn theo hướng dẫn rồi tự làm nhé

Đồ thị có \(a< 0\) \(\Rightarrow\) Hàm số nghịch biến trên R

\(\Rightarrow\) Đồ thị có đỉnh \(I\left(1;4\right)\)

Chọn các điểm:

x 1 3 -1 2 -2

y 4 0 0 3 -5

28 tháng 4 2017

a) TXĐ: \(D=R\).
b) \(TXD=D=R\backslash\left\{4\right\}\)
c) Đkxđ: \(\left\{{}\begin{matrix}4x+1\ge0\\-2x+1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{4}\\x\le\dfrac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-1}{4}\le x\le\dfrac{1}{2}\).
TXĐ: D = \(\left[\dfrac{-1}{4};\dfrac{1}{2}\right]\)

3 tháng 5 2017

a) Đkxđ: \(\left\{{}\begin{matrix}x+9\ge0\\x^2+8x-20\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\\left\{{}\begin{matrix}x\ne2\\x\ne-10\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-9\\x\ne2\end{matrix}\right.\)
Txđ: D = [ - 9; 2) \(\cup\) \(\left(2;+\infty\right)\)
b) Đkxđ: \(\left\{{}\begin{matrix}2x+1\ne0\\x-3\ne0\end{matrix}\right.\Leftrightarrow\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{2}\\x\ne3\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{\dfrac{-1}{2};3\right\}\)
c) \(x^2+2x-5\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne-1+\sqrt{6}\\x\ne-1-\sqrt{6}\end{matrix}\right.\)
Txđ: \(D=R\backslash\left\{-1+\sqrt{6};-1-\sqrt{6}\right\}\)


11 tháng 8 2015

a) Với \(x\in\left[0;1\right]\) => x  - 2 < 0 => |x - 2| = - (x -2)

Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m<0\)  (*)  với mọi \(x\in\left[0;1\right]\)

+) Xét m - 1 > 0 <=> m > 1 

(*) <=> \(x<\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\ge1\) <=> 2(m -1) \(\le\)m <=> m \(\le\) 2 <=> m \(\le\) 2

Kết hợp điều kiện m > 1 =>1 <  m \(\le\) 2

+) Xét m = 1 thì (*) <=> -1 < 0 luôn đúng => m =1 thỏa mãn

+) Xét m - 1 < 0 <=> m < 1

(*) <=> \(x>\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\le0\) <=> m \(\ge\) 0 (do m< 1 ). Kết hợp m < 1 => 0 \(\le\) m < 1

Kết hợp các trường hợp : Với  0 \(\le\)\(\le\) 2 thì .....

b)  Hoành độ giao điểm của đò thị hàm số với Ox là nghiệm của Phương trình : \(2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}=0\) (1)

Đồ thị hàm số cắt Ox tại điểm có hoành độ xo thuộc (1;2) => x< 2 => |x- 2| = - (x- 2)

xo là nghiệm của (1) <=> \(2\left(m-1\right)x_o+\frac{m\left(x_o-2\right)}{\left|x_o-2\right|}=0\) <=> \(2\left(m-1\right)x_o-m=0\) 

+) Xét m \(\ne\) 1 thì (2)<=> \(x_o=\frac{m}{2\left(m-1\right)}\). Vì 1 < x< 2 nên \(1<\frac{m}{2\left(m-1\right)}<2\) <=> \(\begin{cases}\frac{m}{2\left(m-1\right)}-1>0\\\frac{m}{2\left(m-1\right)}-2<0\end{cases}\) <=> \(\begin{cases}\frac{-m+2}{2\left(m-1\right)}>0\left(a\right)\\\frac{-3m+4}{2\left(m-1\right)}<0\left(b\right)\end{cases}\) 

Giải (a) <=> 1 < m < 2

Giải (b) <=> m < 1 hoặc m > 4/3

Kết hợp nghiệm của (a) và (b) => 4/3 < m < 2

+) Xét m = 1 thì (2) <=> -1 = 0 Vô lí

Vậy Với 4/3 < m < 2 thì đồ thị hàm số cắt Ox tại điểm thuộc (1;2)

 

17 tháng 5 2017

Ôn tập chương II

Bạn ghi lại hàm số đi bạn

\(f\left(x\right)=\left(x-1\right)^2\)

\(f\left(0\right)=\left(0-1\right)^2=1\)

\(f\left(-3\right)=\left(-3-1\right)^2=16\)

\(f\left(\dfrac{1}{2}\right)=\left(\dfrac{1}{2}-1\right)^2=\dfrac{1}{4}\)

\(f\left(\dfrac{2}{3}\right)=\left(\dfrac{2}{3}-1\right)^2=\dfrac{1}{9}\)

\(f\left(-\dfrac{3}{4}\right)=\left(-\dfrac{3}{4}-1\right)^2=\dfrac{49}{16}\)

13 tháng 4 2017

a) Bảng biến thiên:

Đồ thị: - Đỉnh:

- Trục đối xứng:

- Giao điểm với trục tung A(0; 1)

- Giao điểm với trục hoành , C(1; 0).

(hình dưới).

b) y = - 3x2 + 2x – 1=

Bảng biến thiên:

Vẽ đồ thị: - Đỉnh Trục đối xứng: .

- Giao điểm với trục tung A(0;- 1).

- Giao điểm với trục hoành: không có.

Ta xác định thêm mấy điểm: B(1;- 2), C(1;- 6). (bạn tự vẽ).

c) y = 4x2 - 4x + 1 = .

Lập bảng biến thiên và vẽ tương tự câu a, b.

d) y = - x2 + 4x – 4 = - (x – 2)2

Bảng biến thiên:

Cách vẽ đồ thị:

Ngoài cách vẽ như câu a, b, ta có thể vẽ như sau:

+ Vẽ đồ thị (P) của hàm số y = - x2.

+ Tịnh tiến (P) song song với Ox sang phải 2 đơn vị được (P1) là đồ thị cần vẽ. (hình dưới).

e) y = 2x2+ x + 1;

- Đỉnh I \(\left(\dfrac{-1}{4};\dfrac{-7}{8}\right)\)

- Trục đối xứng :\(x=\dfrac{-1}{4}\)

- Giao Ox: Đồ thị không giao với trục hoành

- Giao Oy: Giao với trục tung tại điểm (0;1)

Bảng biến thiên:

Vẽ đồ thị theo bảng sau:

x -2 -1 0 1 2
y 7 2 1 4 11

f) y = - x2 + x - 1.

- Đỉnh I \(\left(\dfrac{1}{2};\dfrac{-3}{4}\right)\)

- Trục đối xứng : \(x=\dfrac{1}{2}\)

- Giao Ox: Đồ thị không giao với trục hoành

- Giao Oy: Giao với trục tung tại điểm (0;-1)

Bảng biến thiên:

Vẽ đồ thị theo bảng sau:

x -2 -1 0 1 2
y -7 -3 -1 -1 -3



17 tháng 5 2017

Hàm số bậc nhất y=ax+b

Hàm số bậc nhất y=ax+b