Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\pi}{2}< a< \frac{3\pi}{2}\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{\sqrt{3}}{2}\)
\(A=cosa.cos\frac{4\pi}{3}+sina.sin\frac{4\pi}{3}=-\frac{\sqrt{3}}{2}.\left(-\frac{1}{2}\right)+\frac{1}{2}.\left(-\frac{\sqrt{3}}{2}\right)=0\)
\(B=cos\left(2a+2019.2\pi\right)=cos2a=1-2sin^2a=1-2\left(\frac{1}{2}\right)^2=\frac{1}{2}\)
\(A=cosa\left(sinb.cosc-cosb.sinc\right)+cosb\left(sinc.cosa-cosc.sina\right)+cosc\left(sinacosb-cosasinb\right)\)
\(A=cosasinbcosc-cosacosbsinc+cosacosbsinc-sinacosbcosc+sinacosbcosc-cosasinbcosc\)
\(A=0\)
\(B=sin^2x+\frac{1}{2}\left(cos\frac{2\pi}{3}+cos2x\right)\)
\(B=\frac{1}{2}-\frac{1}{2}cos2x-\frac{1}{4}+\frac{1}{2}cos2x\)
\(B=\frac{1}{4}\)
\(C=\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}+2x\right)+\frac{1}{2}-\frac{1}{2}cos\left(\frac{4\pi}{3}-2x\right)\)
\(C=\frac{3}{2}-\frac{1}{2}cos2x-\frac{1}{2}\left(cos\left(\frac{4\pi}{3}+2x\right)+cos\left(\frac{4\pi}{3}-2x\right)\right)\)
\(C=\frac{3}{2}-\frac{1}{2}cos2x-cos\frac{4\pi}{3}.cos2x\)
\(C=\frac{3}{2}-\frac{1}{2}cos2x+\frac{1}{2}cos2x\)
\(C=\frac{3}{2}\)
\(D=\frac{1}{2}\left[\sqrt{2}sin\left(\frac{\pi}{4}+x\right)\right]^2-sin^2x-sinx.\sqrt{2}cos\left(\frac{\pi}{4}+x\right)\)
\(D=\frac{1}{2}\left(sinx+cosx\right)^2-sin^2x-sinx\left(sinx-cosx\right)\)
\(D=\frac{1}{2}\left(1+2sinx.cosx\right)-sin^2x-sin^2x+sinx.cosx\)
\(D=\frac{1}{2}+sinxcosx+sinxcosx=\frac{1}{2}+sin2x\)
Góc độ cao của thang dựa vào tường là 60º và chân thang cách tường 4,6 m. Chiều dài của thang là
\(sina.sin\left(\frac{\pi}{3}-a\right)sin\left(\frac{\pi}{3}+a\right)\)
\(=-\frac{1}{2}sina\left[cos\frac{2\pi}{3}-cos2a\right]=-\frac{1}{2}sina\left(-\frac{1}{2}-cos2a\right)\)
\(=\frac{1}{4}sina+\frac{1}{2}sina.cos2a=\frac{1}{4}sina+\frac{1}{4}sin3a-\frac{1}{4}sina\)
\(=\frac{1}{4}sin3a\)
\(sin\frac{\pi}{9}sin\frac{2\pi}{9}sin\frac{4\pi}{9}=sin\frac{\pi}{9}sin\left(\frac{\pi}{3}-\frac{\pi}{9}\right)sin\left(\frac{\pi}{3}+\frac{\pi}{9}\right)=\frac{1}{4}sin\frac{\pi}{3}=\frac{\sqrt{3}}{8}\)
\(cosa.cos\left(\frac{\pi}{3}-a\right)cos\left(\frac{\pi}{3}+a\right)=\frac{1}{2}cosa\left(cos\frac{2\pi}{3}+cos2a\right)\)
\(=\frac{1}{2}cosa\left(cos2a-\frac{1}{2}\right)=\frac{1}{2}cosa.cos2a-\frac{1}{4}cosa\)
\(=\frac{1}{4}cos3a+\frac{1}{4}cosa-\frac{1}{4}cosa=\frac{1}{4}cos3a\)
\(cos\frac{\pi}{18}cos\frac{5\pi}{18}cos\frac{7\pi}{18}=cos\frac{\pi}{18}.cos\left(\frac{\pi}{3}-\frac{\pi}{18}\right).cos\left(\frac{\pi}{3}+\frac{\pi}{18}\right)=\frac{1}{4}cos\frac{\pi}{6}=\frac{\sqrt{3}}{8}\)
\(A=2cosx-3cosx-sin\left(3\pi+\frac{\pi}{2}-x\right)+tan\left(\pi+\frac{\pi}{2}-x\right)\)
\(A=-cosx+sin\left(\frac{\pi}{2}-x\right)+tan\left(\frac{\pi}{2}-x\right)\)
\(A=-cosx+cosx+cotx=cotx\)
\(B=2cosx+sin\left(4\pi+\pi-x\right)+sin\left(2\pi-\frac{\pi}{2}+x\right)-sinx\)
\(B=2cosx+sin\left(\pi-x\right)+sin\left(-\frac{\pi}{2}+x\right)-sinx\)
\(B=2cosx+sinx-sin\left(\frac{\pi}{2}-x\right)-sinx\)
\(B=2cosx-cosx=cosx\)
\(A=cos\left(6\pi+\pi-x\right)+sin\left(2\pi+\frac{\pi}{2}-x\right)+tan^2\left(\pi+\frac{\pi}{2}-x\right)-\frac{1}{sin^2\left(7\pi+\pi+x\right)}\)
\(=cos\left(\pi-x\right)+sin\left(\frac{\pi}{2}-x\right)+tan^2\left(\frac{\pi}{2}-x\right)-\frac{1}{sin^2\left(\pi+x\right)}\)
\(=-cosx+cosx+cot^2x-\frac{1}{sin^2x}\)
\(=cot^2x-\left(1+cot^2x\right)=-1\)
Nhìn đề bài hãi quá :(
a/ \(A=3\sin\left(5.2\pi+\pi-x\right).\sin\left(2\pi+\frac{\pi}{2}-x\right)+2\sin\left(4.2\pi+\pi+x\right)\)
\(A=3\sin\left(\pi-x\right).\sin\left(\frac{\pi}{2}-x\right)+2\sin\left(\pi+x\right)\)
\(A=3\sin x.\cos x-2\sin x=\sin x\left(3\cos x-2\right)\)
b/ \(B=\sin\left(5.2.180^0+180^0+x\right)-\cos\left(90^0-x\right)+\tan\left(90^0+180^0-x\right)+\cot\left(2.180^0-x\right)\)
\(B=\sin\left(180^0+x\right)-\sin x+\tan\left(90^0-x\right)+\cot\left(-x\right)\)
\(B=-\sin x-\sin x+\cot x-\cot x=-2\sin x\)
c/ \(C=-2\sin\left(-(2\pi+\frac{\pi}{2}-x)\right)-3\cos\left(2\pi+\pi-x\right)+5\sin\left(2.2\pi-\left(\frac{\pi}{2}+x\right)\right)+\cot\left(\pi+\frac{\pi}{2}-x\right)\)
\(C=2\sin\left(\frac{\pi}{2}-x\right)-3\cos\left(\pi-x\right)-5\sin\left(\frac{\pi}{2}+x\right)+\cot\left(\frac{\pi}{2}-x\right)\)
\(2\cos x+3\cos x-5\cos x+\tan x=\tan x\)
d/ \(D=\tan\left(-\left(\pi-x\right)\right).\cos\left(-\left(\frac{\pi}{2}-x\right)\right).\left(-\cos x\right)\)
\(D=\tan\left(\pi-x\right).\cos\left(\frac{\pi}{2}-x\right).\cos x\)
\(D=-\tan x.\sin x.\cos x=-\sin^2x\)
e/ \(E=\cos\left(28.2\pi+\pi+\frac{\pi}{2}-x\right)+\sin\left(-\left(58.2\pi+\pi+\frac{\pi}{2}-x\right)\right)+\cos\left(-\left(46.2\pi+\pi+\frac{\pi}{2}-x\right)\right)+\sin\left(35.2\pi+\pi+\frac{\pi}{2}-x\right)\)
\(E=-\cos\left(\frac{\pi}{2}-x\right)+\sin\left(\frac{\pi}{2}-x\right)-\cos\left(\frac{\pi}{2}-x\right)-\sin\left(\frac{\pi}{2}-x\right)\)
\(E=-2\sin x\)
Thôi, stop ở đây, làm nữa chắc tẩu hỏa nhập ma quá :(
Mình thấy hầu hết các bài này đều có chung 1 điểm, và chắc đó cũng là điểm mà bạn thắc mắc: Đó chính là tách các hạng tử ra và biến đổi
Tách cũng đơn giản thôi, cứ gặp sin, cos thì tách sao cho về dạng 2pi+..., gặp tan, cot thì pi.
Còn tách mấy cái phân số như vầy:
Ví dụ \(\frac{7\pi}{2}\) , 7 chia 2 được 3, ta lấy \(\frac{7}{2}-3=\frac{1}{2}\) thì suy ra: \(\frac{7\pi}{2}=3\pi+\frac{\pi}{2}\)
Đó, thế là được :D
\(a\in\left(\frac{\pi}{2};\pi\right)\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\frac{4}{5}\)
\(A=\frac{sin\left(4\pi-\frac{\pi}{2}-a\right)}{sin\left(a+\frac{\pi}{4}\right)-cosa}=\frac{-sin\left(a+\frac{\pi}{2}\right)}{sin\left(a+\frac{\pi}{4}\right)-cosa}=\frac{-cosa}{sina.cos\frac{\pi}{4}+cosa.sin\frac{\pi}{4}-cosa}\)
\(=\frac{-\frac{4}{5}}{\frac{3}{5}.\frac{\sqrt{2}}{2}-\frac{4}{5}.\frac{\sqrt{2}}{2}-\frac{4}{5}}=...\)
Câu 4:
Đặt \(x=sina+cosa>0\Rightarrow x^2=\left(sina+cosa\right)^2\)
\(\Rightarrow x^2=sin^2a+cos^2a+2sina.cosa=1+2.\frac{12}{25}=\frac{49}{25}\)
\(\Rightarrow x=\sqrt{\frac{49}{25}}=\frac{7}{5}\)
\(\Rightarrow P=\left(sinx+cosx\right)\left(sin^2x+cos^2x-sinx.cosx\right)\)
\(P=\frac{7}{5}\left(1-\frac{12}{25}\right)=\frac{91}{125}\)
Câu 5:
\(sina+cosa=m\Rightarrow\left(sina+cosa\right)^2=m^2\)
\(\Leftrightarrow sin^2a+cos^2a+2sina.cosa=m^2\)
\(\Leftrightarrow1+2sina.cosa=m^2\)
\(\Rightarrow2sina.cosa=m^2-1\)
\(P=\left|sina-cosa\right|\ge0\)
\(\Leftrightarrow P^2=\left(sina-cosa\right)^2=sin^2a+cos^2a-2sina.cosa\)
\(\Leftrightarrow P^2=1-2sina.cosa=1-\left(m^2-1\right)=2-m^2\)
\(\Rightarrow P=\sqrt{2-m^2}\)
Câu 1:
Do \(\frac{\pi}{2}< a< \pi\Rightarrow cosa< 0\)
\(sin\left(\pi+a\right)=-sina\Rightarrow-sina=-\frac{1}{3}\Rightarrow sina=\frac{1}{3}\)
\(\Rightarrow cosa=-\sqrt{1-sin^2a}=\frac{-2\sqrt{2}}{3}\)
\(P=tan\left(\frac{7\pi}{2}-a\right)=tan\left(3\pi+\frac{\pi}{2}-a\right)=tan\left(\frac{\pi}{2}-a\right)=cota\)
\(\Rightarrow P=\frac{cosa}{sina}=-2\sqrt{2}\)
Câu 2:
\(tan\left(a+\frac{\pi}{4}\right)=\frac{tana+tan\frac{\pi}{4}}{1-tana.tan\frac{\pi}{4}}=\frac{tana+1}{1-tana}\)
\(\Rightarrow\frac{tana+1}{1-tana}=1\Rightarrow tana+1=1-tana\Rightarrow tana=0\)
\(\Rightarrow\frac{sina}{cosa}=0\Rightarrow sina=0\)
Do \(\frac{\pi}{2}< a< 2\pi\Rightarrow-1\le cosa< 1\)
\(cos^2a=1-sin^2a=1-0=1\Rightarrow\left[{}\begin{matrix}cosa=-1\\cosa=1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow P=cos\left(a-\frac{\pi}{6}\right)+sina=cosa.cos\frac{\pi}{6}+sina.sin\frac{\pi}{6}+sina\)
\(P=-1.\frac{\sqrt{3}}{2}+0.\frac{1}{3}+0=-\frac{\sqrt{3}}{2}\)
\(\frac{3\pi}{2}< a< 2\pi\Rightarrow cosa>0\Rightarrow cosa=\sqrt{1-sin^2a}=\frac{4}{5}\)
\(tana=\frac{sina}{cosa}=-\frac{3}{4}\)
\(sin2a=2sina.cosa=-\frac{24}{25}\)
\(cos2a=2cos^2a-1=\frac{7}{25}\)
\(tan\left(a+\frac{\pi}{4}\right)=\frac{tana+tan\frac{\pi}{4}}{1-tana.tan\frac{\pi}{4}}=\frac{-\frac{3}{4}+1}{1+\frac{3}{4}}=...\)
c sai đề
\(sin\left(a+\frac{\pi}{4}\right)=sina.cos\frac{\pi}{4}+cosa.sin\frac{\pi}{4}=...\)
\(M=\frac{\left(-\frac{3}{5}\right)^2-\left(\frac{7}{25}\right)^2}{-\frac{3}{4}}=...\)
Bài 1:
\(\Leftrightarrow-cosa-cosa+sina+cosa=0\Leftrightarrow sina=cosa\)
\(\Rightarrow a=\frac{\pi}{4}+k\pi\Rightarrow a\) thuộc cung thứ nhất và thứ 3
Bài 2:
Ta có \(\frac{5\pi}{3}-\left(-\frac{\pi}{3}\right)=\frac{6\pi}{3}=2\pi\Rightarrow\) góc \(\frac{5\pi}{3}\) và \(-\frac{\pi}{3}\) cùng cung biểu diễn