Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình.
a, \(xy\) cách \(\left(O\right)\) một khoảng \(OK=a\)
Mà \(OK< R\)
=> \(K\in xy\) và \(xy\) cắt \(\left(O\right)\) tại hai điểm D và E
b, \(OK\perp xy\) đồng thời \(OK\perp AK\) => \(\widehat{AKO}=90^o\) => K thuộc đường tròn đường kính AO (1)
AC, AB là 2 tiếp tuyến => \(\hept{\begin{cases}AC\perp CO\\AB\perp BO\end{cases}}\)=> \(\hept{\begin{cases}\widehat{ACO}=90^o\\\widehat{ABO}=90^o\end{cases}}\)
=> B, C thuộc đường kính BC (2)
(1); (2) => K, B, C thuộc đường kính BC
Hay O, A, B, C, K cùng thuộc đường kính BC
c, \(AK\perp KO\)
=> \(\widehat{AKS}=90^o\)
=> K thuộc đường tròn đường kính AS (3)
=> \(AO\perp BC\) tại M
=> \(\widehat{AMS}=90^o\)
=> M thuộc đường tròn đường kính AS (4)
(3); (4) => AMKS nội tiếp
A B O C D E M H K
a)Ta có: EA \(\perp\)AB (t/c tiếp tuyến) => \(\widehat{OAE}=90^0\)
OD \(\perp\)EC (t/c tiếp tuyến) => \(\widehat{ODE}=90^0\)
Xét t/giác AODE có \(\widehat{OAE}+\widehat{ODE}=90^0+90^0=180^0\)
=> t/giác AODE nt đường tròn (vì tổng 2 góc đối diện = 1800)
b) Xét \(\Delta\)EKD và \(\Delta\)EDB
có: \(\widehat{BED}\):chung
\(\widehat{EDK}=\widehat{EBK}=\frac{1}{2}sđ\widebat{KD}\)
=> \(\Delta\)EKD ∽ \(\Delta\)EDB (g.g)
=> \(\frac{ED}{EB}=\frac{EK}{ED}\)=> ED2 = EK.EB (1)
Ta có: AE = ED (t/c 2 tt cắt nhau) => E thuộc đường trung trực của AD
OA = OD = R => O thuộc đường trung trực của AD
=> EO là đường trung trực của ED => OE \(\perp\)AD
Xét \(\Delta\)EDO vuông tại D có DH là đường cao => ED2 = EK.EB (2)
Từ (1) và (2) => EH.EO = DK.EB => \(\frac{EH}{EB}=\frac{EK}{EO}\)
Xét tam giác EHK và tam giác EBO
có: \(\widehat{OEB}\): chung
\(\frac{EH}{EB}=\frac{EK}{EO}\)(cmt)
=> tam giác EHK ∽ tam giác EBO (c.g.c)
=> \(\widehat{EHK}=\widehat{KBA}\)
c) Ta có: OM // AE (cùng vuông góc với AB) => \(\frac{OM}{AE}=\frac{MC}{EC}\)(hq định lí ta-lét)
=> OM.EC = AE.MC
Ta lại có: \(\frac{EA}{EM}-\frac{MO}{MC}=\frac{EA.MC-MO.EM}{EM.MC}=\frac{MO.EC-MO.EM}{EM.MC}=\frac{OM.MC}{EM.MC}=\frac{OM}{EM}\)
Mặt khác: OM // AE => \(\widehat{MOE}=\widehat{OEA}\)(slt)
mà \(\widehat{AEO}=\widehat{OEM}\)(t/c 2 tt cắt nhau)
=> \(\widehat{MOE}=\widehat{MEO}\) => tam giác OME cân tại M => OM = ME
=> \(\frac{OM}{EM}=1\)
=> \(\frac{EA}{EM}-\frac{OM}{MC}=1\)
https://thi.tuyensinh247.com/de-thi-thu-vao-lop-10-mon-toan-lan-3-phong-gddt-gia-loc-2016-c31a28113.html
Xét (O) có
^ABC = 900 ( góc nr chắn nửa đường tròn )
=> ^ABD' = 900
=> AD' là đường kính của đường tròn (O') ; B là điểm thuộc đường tròn
=> A;O';D thẳng hàng
Bài 1:
b)
chứng minh EDCB là tgnt => góc AED = góc ACB
từ đó, chứng minh tam giác AED đồng dạng ACB (gg)
=> DE / BC = AD / AB
tam giác ADB vuông tại A => AD / AB = cotg A = cotg 45 = 1
c)
kẻ tiếp tuyến tại Ax của (O) (Ax thuộc nửa mp bờ AC chứa B)
góc xAB = ACB = AED
=> DE // Ax
Mà Ax vuông góc với OA nên OA vuông góc với DE. (đpcm)
A B M P O H I N
c/
1/ Xét \(\Delta PMI\) và \(\Delta PBM\) có
\(\widehat{BPM}\) chung
\(sđ\widehat{IMP}=\frac{1}{2}sđ\) cung MI (Góc giữa tiếp tuyến và dây cung)
\(sđ\widehat{PBM}=\frac{1}{2}sđ\)cung MI (Góc nội tiếp đường tròn)
\(\Rightarrow\widehat{IMP}=\widehat{PBM}\)
\(\Rightarrow\Delta PMI\) đồng dạng \(\Delta PBM\) (g.g.g) \(\Rightarrow\frac{PI}{PM}=\frac{PM}{PB}\Rightarrow PI.PB=PM^2\left(dpcm\right)\)
2/ Ta có
\(AB\perp PO\) (Hai tiếp tuyến cùng xp từ 1 điểm ở ngoài đường tròn thì đường nối điểm đó với tâm đường tròn vuông góc với đường nối 2 tiếp điểm)
Xét tg vuông PMO
\(PH.PO=PM^2\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu của cạnh đó trên cạnh huyền với cạnh huyền) (đpcm)
3/