Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Bài 1: Áp dụng Định lý Pythagoras cho tam giác vuông ABC:AB2+AC2=BC2=>BC2=122+162=400=>BC=20(cm).
Áp dụng Định lý:"Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác ABC:AM=\(\frac{1}{2}\)BC=\(\frac{1}{2}\).20=10cm
Do G là trọng tâm nên:AG=\(\frac{2}{3}\)AM=\(\frac{2}{3}\).10\(\approx\)6.7cm
Bài 2:
E D B C A H
a) Xét \(\Delta\)ABD và \(\Delta\)ACE:
ADB=AEC=90
BAC:chung
AB=AC(\(\Delta\)ABC cân tại A)
=> \(\Delta\)ABD =\(\Delta\)ACE (Cạnh huyền-góc nhọn)
b) \(\Delta\)ABD =\(\Delta\)ACE (chứng minh trên)=>AD=AE=> \(\Delta\)AED cân tại A
c) Dễ thấy: H là trực tâm của tam giác ABC
Mà \(\Delta\)ABC cân tại A
Nên H cũng đồng thời là tam đường tròn ngoại tiếp tam giác ABC
Hay AH là đường trung trực của tam giác ABC
a/
Xét tg ABM và tg ACM có
MB=MC (đề bài)
AB=AC (Do tg ABC cân tại A)
\(\widehat{ABC}=\widehat{ACB}\) (Do tg ABC cân tại A)
=> tg ABM=tg ACM (c.g.c)
Ta có MB=MC => AM là trung tuyến của tg ABC => \(AM\perp BC\) (trong tg cân đường trung tuyến đồng thời là đường cao)
b/
Xét tg vuông BME và tg vuông CMF có
MB=MC
\(\widehat{ABC}=\widehat{ACB}\)
=> tg BME = tg CMF (hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => ME=MF => tg EMF cân tại M
c/
Do \(AM\perp BC\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
Do tg BME = tg CMF \(\Rightarrow\widehat{BME}=\widehat{CME}\)
\(\Rightarrow\widehat{AME}=\widehat{AMF}\) (cungf phụ với \(\widehat{BME}\) = \(\widehat{CMF}\) )
=> AM là phân giác của \(\widehat{FME}\Rightarrow AM\perp EF\) (Trong tg can EMF đường phân giác đồng thời là đường cao)
Mà \(AM\perp BC\)
=> EF//BC (cùng vuông góc với AM)
Bài 1:
Gọi M là trung điểm của BC
Vẽ BE là tia phân giác của góc B, E thuộc AC
nối M với E
ta có: BM =CM = 1/2.BC ( tính chất trung điểm)
AB=1/2.BC (gt)
=> BM = CM= AB ( =1/2.BC)
Xét tam giác ABE và tam giác MBE
có: AB = MB (chứng minh trên)
góc ABE = góc MBE (gt)
BE là cạnh chung
\(\Rightarrow\Delta ABE=\Delta MBE\left(c-g-c\right)\)
=> góc BAE = góc BME = 90 độ ( 2 cạnh tương ứng)
=> góc BME = 90 độ
\(\Rightarrow BC\perp AM⋮M\)
Xét tam giác BEM vuông tại M và tam giác CEM vuông tại M
có: BM=CM(gt)
EM là cạnh chung
\(\Rightarrow\Delta BEM=\Delta CEM\left(cgv-cgv\right)\)
=> góc EBM = góc ECM ( 2 cạnh tương ứng)
mà góc EBM = góc ABE = 1/2. góc B (gt)
=> góc EBM = góc ABE = góc ECM
Xét tam giác ABC vuông tại A
có: \(\widehat{B}+\widehat{ECM}=90^0\) ( 2 góc phụ nhau)
=> góc EBM + góc ABE + góc ECM = 90 độ
=> góc ECM + góc ECM + góc ECM = 90 độ
=> 3.góc ECM = 90 độ
góc ECM = 90 độ : 3
góc ECM = 30 độ
=> góc C = 30 độ
A B C M D E
a) Xét \(\Delta ABM\) và \(\Delta ACM\) có :
AB = AC ( gt )
BM = CM ( M là trung điểm BC )
AM : Cạnh chung
=> \(\Delta ABM\) = \(\Delta ACM\) ( c.c.c )
b) Ta có : \(\Delta ABM\) = \(\Delta ACM\) ( cmt )
=> \(\widehat{AMB}\) = \(\widehat{AMC}\) ( 2 góc tương ứng )
=> \(\widehat{AMB}\) = \(\widehat{AMC}\) = \(\frac{\widehat{BMC}}{2}\) = \(\frac {180} 2\) = 90
Hay AM \(\bot\) BC
a) Áp dụng Định lý Pythagoras cho tam giác vuông ABC, ta được:
AB2+AC2=32+62=45=BC2=>BC=\(\sqrt{45}\)cm
b) Xét \(\Delta\)BAD và \(\Delta\)EAD:
AE=AB(Do cùng bằng 3 cm)
BAD=EAD
AD chung
=>\(\Delta\)BAD=\(\Delta\)EAD(c-g-c)
c) Xét \(\Delta\)ABC và \(\Delta\)AEM:
A chung
AB=AE
ABC=AEM( Suy ra trực tiếp từ câu b)
=>\(\Delta\)ABC=\(\Delta\)AEM=>AC=AM=>\(\Delta\)CAM vuông cân tại A
d) Áp dụng Định lý Pythagoras cho tam giác vuông CAM, ta được:
AC2+AM2=MC2=>2.AC2=MC2( Do \(\Delta\)CAM vuông cân tại A)
Lại có:BC2=AC2+AB2
Do: AC>AB(gt)
Nên:MC>BC
Mặt khác:\(\Delta\)ABC=\(\Delta\)AEM(chứng minh trên)=>BC=ME
Suy ra MC>ME