\(\Delta ABC\) cân tại A ( \(\widehat{A}\) < 90...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

ba ý đầu mị lm ntn này nek, coi đúng hông ha^^

a)xét tam giác vuông ABD và tam giác vuônng có: AB=AD(gt); A chung

=>ABD=ACE(ch-gn)

ý b bỏ ha,  lm ý c

AE=AD(tam giác ABD=ACE)=>Tam giác AED cân tại A

=>\(\widehat{AED}=\widehat{ADE}=\frac{180-\widehat{EAD}}{2}\left(1\right)\)

xét tam giác ABC cân tại A:

=>\(\widehat{ABC}=\widehat{ACB}=\frac{180-\widehat{BAC}}{2}hay:\widehat{EBC}=\widehat{DCB}=\frac{180-\widehat{EAD}}{2}\left(2\right)\)

Từ (1) và (2) => góc AED=EBC

mak hay góc mày ở vtris đồng vị nên ED//BC

29 tháng 5 2018

hình bạn tự vẽ nhé!!

a, Xét tam giác ABD và tam giác ACE

có góc ADB = góc AEC (=90độ)

AB =AC (do tam giác ABC cân tại A)

góc A chung 

=> 2 tam giác ABD=ACE(ch-gn)

b, xét tam giác BDC và tam giác CEB

có góc BDC = góc CEB (=90độ)

BC là cạnh chung

góc ABC = góc ACB (do tam giác ABC cân tại A)

=>2 tam giác BDC = CEB (ch-gn)

=> góc DBC = góc ECB(2 góc tương ứng)

Xét tam giác BHC có góc DBC = góc ECB (cmt)

=> tam giác BHC cân tại H

c, Xét tam giác DHC có HDC = 90 độ

=>  HC > HD (trong tam giác vuông cạnh huyền là cạnh lớn nhất)

mà HC = HB (vì tam giác BHC cân tại H)

Từ đó => HB>HD

d, mình chưa học!!sorry!!

chúc bạn hk tốt!!

26 tháng 3 2018

MAX khó quá!!!!!!!!!!!!!!!!

câu này nâng cao

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC
góc BAD chung

Do đó: ΔABD=ΔACE

b: SỬa đề: ΔHDE cân tại H

Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

Ta có: ΔEBC vuông tại E

mà EH là đường trung tuyến

nên EH=BC/2(1)

Ta có: ΔDBC vuông tại D

mà DH là đường trung tuyến

nên DH=BC/2(2)

Từ (1) và (2) suy ra HD=HE

hay ΔHDE cân tại H

c: Xét ΔBDC có

H là trung điểm của BC

HM//BD

Do đó: M là trung điểm của CD

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0
29 tháng 4 2019

Bài 1: Áp dụng Định lý Pythagoras cho tam giác vuông ABC:AB2+AC2=BC2=>BC2=122+162=400=>BC=20(cm).

 Áp dụng Định lý:"Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác ABC:AM=\(\frac{1}{2}\)BC=\(\frac{1}{2}\).20=10cm

Do G là trọng tâm nên:AG=\(\frac{2}{3}\)AM=\(\frac{2}{3}\).10\(\approx\)6.7cm

Bài 2:

E D B C A H

a) Xét \(\Delta\)ABD và \(\Delta\)ACE:

      ADB=AEC=90

      BAC:chung

      AB=AC(\(\Delta\)ABC cân tại A)

=> \(\Delta\)ABD =\(\Delta\)ACE (Cạnh huyền-góc nhọn)

b) \(\Delta\)ABD =\(\Delta\)ACE (chứng minh trên)=>AD=AE=> \(\Delta\)AED cân tại A

c) Dễ thấy: H là trực tâm của tam giác ABC

    Mà  \(\Delta\)ABC cân tại A 

    Nên H cũng đồng thời là tam đường tròn ngoại tiếp tam giác ABC 

    Hay AH là đường trung trực của tam giác ABC