Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ba ý đầu mị lm ntn này nek, coi đúng hông ha^^
a)xét tam giác vuông ABD và tam giác vuônng có: AB=AD(gt); A chung
=>ABD=ACE(ch-gn)
ý b bỏ ha, lm ý c
AE=AD(tam giác ABD=ACE)=>Tam giác AED cân tại A
=>\(\widehat{AED}=\widehat{ADE}=\frac{180-\widehat{EAD}}{2}\left(1\right)\)
xét tam giác ABC cân tại A:
=>\(\widehat{ABC}=\widehat{ACB}=\frac{180-\widehat{BAC}}{2}hay:\widehat{EBC}=\widehat{DCB}=\frac{180-\widehat{EAD}}{2}\left(2\right)\)
Từ (1) và (2) => góc AED=EBC
mak hay góc mày ở vtris đồng vị nên ED//BC
hình bạn tự vẽ nhé!!
a, Xét tam giác ABD và tam giác ACE
có góc ADB = góc AEC (=90độ)
AB =AC (do tam giác ABC cân tại A)
góc A chung
=> 2 tam giác ABD=ACE(ch-gn)
b, xét tam giác BDC và tam giác CEB
có góc BDC = góc CEB (=90độ)
BC là cạnh chung
góc ABC = góc ACB (do tam giác ABC cân tại A)
=>2 tam giác BDC = CEB (ch-gn)
=> góc DBC = góc ECB(2 góc tương ứng)
Xét tam giác BHC có góc DBC = góc ECB (cmt)
=> tam giác BHC cân tại H
c, Xét tam giác DHC có HDC = 90 độ
=> HC > HD (trong tam giác vuông cạnh huyền là cạnh lớn nhất)
mà HC = HB (vì tam giác BHC cân tại H)
Từ đó => HB>HD
d, mình chưa học!!sorry!!
chúc bạn hk tốt!!
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
Do đó: ΔABD=ΔACE
b: SỬa đề: ΔHDE cân tại H
Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
Ta có: ΔEBC vuông tại E
mà EH là đường trung tuyến
nên EH=BC/2(1)
Ta có: ΔDBC vuông tại D
mà DH là đường trung tuyến
nên DH=BC/2(2)
Từ (1) và (2) suy ra HD=HE
hay ΔHDE cân tại H
c: Xét ΔBDC có
H là trung điểm của BC
HM//BD
Do đó: M là trung điểm của CD
Bài 1: Áp dụng Định lý Pythagoras cho tam giác vuông ABC:AB2+AC2=BC2=>BC2=122+162=400=>BC=20(cm).
Áp dụng Định lý:"Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác ABC:AM=\(\frac{1}{2}\)BC=\(\frac{1}{2}\).20=10cm
Do G là trọng tâm nên:AG=\(\frac{2}{3}\)AM=\(\frac{2}{3}\).10\(\approx\)6.7cm
Bài 2:
E D B C A H
a) Xét \(\Delta\)ABD và \(\Delta\)ACE:
ADB=AEC=90
BAC:chung
AB=AC(\(\Delta\)ABC cân tại A)
=> \(\Delta\)ABD =\(\Delta\)ACE (Cạnh huyền-góc nhọn)
b) \(\Delta\)ABD =\(\Delta\)ACE (chứng minh trên)=>AD=AE=> \(\Delta\)AED cân tại A
c) Dễ thấy: H là trực tâm của tam giác ABC
Mà \(\Delta\)ABC cân tại A
Nên H cũng đồng thời là tam đường tròn ngoại tiếp tam giác ABC
Hay AH là đường trung trực của tam giác ABC