K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)Xét tam giác AMH và tam giác MNB 

Góc M1= Góc M2 ( đối đỉnh)

MA = MN (gt)

MB = MH ( M là trung điểm của BH)

=> tam giác AMH = tam giác MNB ( cgc)

tam giác AMH = tam giác MNB (cmt)

góc B = góc H (góc tương ứng)

Mà góc H = 90 độ ( kẻ Ah vuông góc với BC )

Vậy góc B = góc H = 90 độ

=> NB vuông góc với BC

b)tam giác AMH = tam giác MNB(câu a)

AH=NB( cạnh tương ứng)

Xét tam giác ABH, có:

AB > AH ( quan hệ giữa cạnh huyền và cạnh góc vuông)

Mà AH=NB(chứng minh trên)

=> AB > NB

7 tháng 8 2015

a) Xét ΔAMH và ΔNMB có:

       MB=MH (gt)

Góc BMN = HMA (đối đỉnh

       MA=MN (gt)

Vậy ΔAMH=ΔNMB. (c.g.c)

=> Góc MBN=MAH=90o(2 góc tương ứng)

Hay NB vuông góc với BC.

b) Vì ΔAMH=ΔNMB nên AH=NB (1)

ΔABH vuông tại H, có AH là đường cao, AB là đường xiên

nên AH<AB(quan hệ đường xiên và hình chiếu trong tam giác vuông). (2)

Từ (1) và (2) suy ra NB<AB.

c) Từ M kẻ MK vuông góc với AB tại K.

ΔBKM có KM là đường cao, MB là đường xiên nên MK<MB mà MB=MH

=> MK<MH => GÓc BAM<MAH(quan hệ giữa góc và cạnh đối diện trong tam giác).

d) câu này mình k chắc lắm

ΔACN có AI và CM là các đường trung tuyến giao nhau tại H nên H là trọng tâm của tam giác.

=> AH là trung tuyến kẻ từ đỉnh A đến NC, mà AI cũng là trung tuyến kẻ từ A đến NC nên 3 điểm A, H, I cùng nằm trên đường trung tuyến của NC

Vậy 3 điểm A, H, I thẳng Hàng.

vì bạn chưa học đường trung bình nên mình k dùng theo tiên đề ơ-clit được, câu d nếu sai thì cho xl nha!

19 tháng 8 2016

A C B H M N I

a) Xét ΔAMH và ΔNMB:

  • MB=MH(M là trung điểm BH)
  • Góc HMA= Góc BMN
  • MA=MH(gt)

Vậy   ΔAMH = ΔNMB(c.g.c)

Suy ra Góc AHM= Góc MBN(2 góc tương ứng)

Mà Góc AHM=90o(AH là đường cao ΔABC)

Nên Góc MBN=90o

Vậy NB vuông góc với BC

b) Ta có: ΔAMH = ΔNMB(cmt)

Nên AH=NB          

Vì AH là đường cao ΔABC cân tại A

Nên AH<AB         

Vì AH<AB(cmt)

Mà AH=NB

Nên NB<AB

c) và d) bạn đợi tí nhé

 

 

19 tháng 8 2016

bạn làm hộ mk yk d dc k

 

29 tháng 4 2019

xét tam giác AMH và tam giác NMB có : AM = MN (gt)

BM = MH do M là trung điểm của BH (gt)

góc AMH = góc NMB (đối đỉnh)

=> tam giác AMH = tam giác NMB (c - g - c)

=> góc AHM = góc NBM (đn)

mà góc AHM = 90 do AH _|_ BC (gt)

=> góc NBM = 90

=> BN _|_ BC (đn)

29 tháng 4 2019

Do \(\Delta\)ABC cân tại A nên AH là đường cao đồng thời là đường trung tuyến

Ta có:H là trung điểm BC,I là trung điểm CN 

Áp dụng định lý sau: "đoạn thẳng nối trung điểm 2 cạnh bất kì của một tam giác thì song song với cạnh còn lại và bằng nửa cạnh ấy, đoạn thẳng này gọi là đường trung bình" cho tam giác BCN thì: HI//BN

Mà: HAM=BNM (suy ra trực tiếp từ kết quả câu a)

=>AH//BN

Theo Tiên đề Euclid thì AH trùng HI hay A;H;I thẳng hàng 

Bài 2: Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12cm và HC=16 cm. Tính chu vi tam giác ABC.Bài 3: Cho góc nhọn xOy và N là một điểm thuộc tia phân giác của góc xOy. Kẻ NAvuông góc với Ox (A ∈ Ox), NB vuông góc với Oy (B ∈ Oy)a) Chứng minh: NA = NB.b) Tam giác OAB là tam giác gì? Vì sao?c) Đường thẳng BN cắt Ox tại D, đường thẳng AN cắt Oy tại E.Chứng minh: ND = NE.d) Chứng minh ON ⊥ DEBài 4:...
Đọc tiếp

Bài 2: Cho tam giác nhọn ABC. Kẻ AH ⊥ BC (H∈BC). Biết AB = 13 cm; AH = 12
cm và HC=16 cm. Tính chu vi tam giác ABC.
Bài 3: Cho góc nhọn xOy và N là một điểm thuộc tia phân giác của góc xOy. Kẻ NA
vuông góc với Ox (A ∈ Ox), NB vuông góc với Oy (B ∈ Oy)
a) Chứng minh: NA = NB.
b) Tam giác OAB là tam giác gì? Vì sao?
c) Đường thẳng BN cắt Ox tại D, đường thẳng AN cắt Oy tại E.
Chứng minh: ND = NE.
d) Chứng minh ON ⊥ DE
Bài 4: Cho tam giác ABC cân tại A, Kẻ AH⊥BC (H ∈ BC)
a) Chứng minh góc ∠BAH = ∠CAH
b) Cho AH = 3 cm, BC = 8 cm. Tính độ dài AC.
c) Kẻ HE ⊥ AB, HD ⊥ AC . Chứng minh AE = AD.
d) Chứng minh ED // BC.
Bài 5: (3,5 điểm)
Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D, DN⊥BC tại N.
a) Chứng minh ∆DBA = ∆DBN.
b) Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh ∆BMC cân.
c) Chứng minh AB + NC &gt; 2.DA.
Bài 6: (3,5 điểm)
Cho ∆ABC vuông tại A (AB &lt; AC). Tia phân giác của góc ABC cắt AC tại D,
DN⊥BC tại N.
a) Chứng minh ∆ABD = ∆NBD.

3

b) Gọi K là giao điểm của hai đường thẳng BA và ND. Chứng minh ∆BKC cân.
Vẽ EH ⊥BC tại H. Chứng minh BC + AH &gt; EK + AB.
Bài 7: (3,5 điểm) Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.
a) Tính độ dài đoạn BC.
b) Vẽ BCAH tại H. Trên HC lấy D sao cho HD = HB.
Chứng minh: AB = AD.
c) Trên tia đối của tia HA lấy điểm E sao cho EH = AH. Chứng minh: ACED .
d) Chứng minh BD &lt; AE.
Bài 5: (3 điểm) Cho ΔABC vuông tại A, kẻ phân giác BD của Bˆ (D thuộc AC), kẻ
BDAH (H thuộc BD), AH cắt BC tại E.
a) Chứng minh: ΔBHA = ΔBHE.
b) Chứng minh: BCED .
c) Chứng minh: AD &lt; DC.
d) Kẻ BCAK (K thuộc BC). Chứng minh: AE là phân giác của KAˆC .
Bài 4: (3,5 điểm) Cho ΔABC vuông tại A, đường trung tuyến CM.
a) Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB, BM.
b) Trên tia đối của tia MC lấy điểm D sao cho MD = MC.
Chứng minh rằng ΔMAC = ΔMBD và AC = BD.
c) Chứng minh rằng AC + BC &gt; 2CM.
d) Gọi K là điểm trên đoạn thẳng AM sao cho AM
3
2
AK

. Gọi N là giao điểm của

CK và AD, I là giao điểm của BN và CD. Chứng minh rằng: CD = 3ID.

giúp mk với

1
10 tháng 3 2022

tú wibu:)

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

5
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn