Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: f(x) = g(x)
<=> ax3 + 4x(x2 - 1) + 8 = x3 - 4x(bx + 1) + c - 3
<=> ax3 + 4x3 - 4x + 8 = x3 - 4bx2 - 4x + c - 3
<=> (a + 4)x3 - 4x + 8 = x3 - 4bx2 - 4x + c - 3
<=> (a + 4)x3 + 8 = x3 - 4bx2 + c - 3
Đồng nhất hệ số
\(\hept{\begin{cases}a+4=1\\-4b=0\\c-3=8\end{cases}}\) <=> \(\hept{\begin{cases}a=-3\\b=0\\c=11\end{cases}}\)
Ta có : f ( x ) = ax^2 + bx + c
Xét f ( 0 ) = a . 0^2 + b . 0 + c = 2018
=> c = 2018
Xét f ( 1 ) = a . 1^2 + b . 1 + c = 2019
=> a + b + c = 2019
= > a + b = 1 [ do c = 2018 theo trên rồi nhá ] ( 1 )
Xét f ( - 1 ) = a . ( -1 ) ^2 + b . ( -1 ) + c
=> a - b + c = 2017
=> a - b = -1 ( 2 )
Cộng ( 1 ) và ( 2 ) vế theo vế , ta được
a + b + a - b = 1 + ( - 1 )
= > 2. a = 0
= > a = 0
Trừ ( 1 ) và ( 2 ) vế theo vế ta được
a + b - a + b = 1 - ( - 1 )
=> 2 . b = 2
= > b = 1
Do đó : xét f ( - 2019 ) = a . ( - 2019 )^2 + b . ( - 2019 ) + c
=> 0 - 2019 + 2018
= - 1
Vậy f ( - 2019 ) = -1
[ nếu gặp các dạng bài này bạn cứ thay vào đa thức ban đầu rồi biến đổi tìm ra a , b , c nha ]
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2\cdot1^2+a\cdot1+4=2^2-5\cdot2-b\\2\cdot\left(-1\right)^2+a\cdot\left(-1\right)+4=5^2-5\cdot5-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+6=-b-6\\2-a+4=-b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-12\\-a+b=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-3\\b=-9\end{matrix}\right.\)