K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2017

TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ

\(AB^2+BC^2=AC^2\)

=>\(8^2+15^2=289=>AC^{ }=17\)

=>AC=17 CM

A B C E

a: Xet ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

b: BA=BE

DA=DE

=>BD là trung trực của AE
c: ΔBAD=ΔBED

=>góc BAD=góc BED=90 độ

=>DE vuông góc BC

AD=DE

DE<DC

=>AD<DC

d: góc HAE+góc BEA=90 độ

góc CAE+góc BAE=90 độ

=>góc HAE=góc CAE

=>AE là phân giác của góc HAC

2 tháng 5 2018

A B C D G M E F

a) Do G là trọng tâm tam giác ABC nên AG = 2GM. Lại có AG = GD nên GD = 2GM hay GM = DM.

Xét tam giác DMB và tam giác GMC có:

DM = GM

BM = CM

\(\widehat{DMB}=\widehat{GMC}\)   (Hai góc đối đỉnh)

\(\Rightarrow\Delta DMB=\Delta GMC\left(c-g-c\right)\)

\(\Rightarrow BD=CG\)

b) Do \(\Delta DMB=\Delta GMC\Rightarrow\widehat{FBM}=\widehat{ECM}\)

Xét tam giác FBM và tam giác ECM có:

\(\widehat{FMB}=\widehat{EMC}=90^o\)

BM = CM

\(\widehat{FBM}=\widehat{ECM}\)

\(\Rightarrow\Delta FBM=\Delta ECM\)   (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow BF=CE\left(đpcm\right)\)

17 tháng 3 2018

a/Ta có: ΔABC cân ở A(gt)

mà AM là đường trung tuyến, nên AM cũng là đường cao

Vậy AM ⊥ BC

b/ Vì M là trung điểm của BC

nên BM=BC:2=32:2=16 (cm)

Xét ΔABM vuông tại M có:

AB2=AM2+BM2 (Định lý Py-ta-go)

nên 342=AM2+162

1156=AM2+256

AM2=1156-256

AM2=900

Vậy AM=30 (cm)

26 tháng 3 2018

a. Xét ΔAMB và ΔAMC, ta có:

AM = AC (gt)

BM = CM (gt)

AM cạnh chung

Suy ra: ΔAMB = ΔAMC (c.c.c)

Suy ra: ∠(AMB) = ∠(AMC) (1)

Lại có: ∠(AMB) + ∠(AMC) = 180o (hai góc kề bù) (2)

Từ (1) và (2) suy ra: ∠(AMB) = ∠(AMC) = 90o

Vậy AM ⊥ BC.

b. Tam giác AMB có ∠(AMB) = 90o

Áp dụng định lí Pi-ta-go vào tam giác vuông AMB, ta có:

AB2 = AM2 + BM2 ⇒ AM2 = AB2 - BM2 = 342 - 162

= 1156 - 256 = 900

Suy ra: AM = 30 (cm).