Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 xét x=0 => A =0
xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)
để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)
=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?
1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)
=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)
\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)
\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)
\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)
=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
=> M=0
Vậy M=0
Ta có: \(-1\le a,b,c\le2\Rightarrow a+1\ge0;a-2\le0\)
\(\Rightarrow\left(a+1\right)\left(a-2\right)\le0\)
\(\Leftrightarrow a^2-a-2\le0\Leftrightarrow a^2\le a+2\)
Tương tự:
\(b^2\le b+2\)
\(c^2\le c+2\)
Cộng vế theo vế, ta được:
\(a^2+b^2+c^2\le a+b+c+2+2+2=6\)
Vậy ta có đpcm
Đặt \(\left\{{}\begin{matrix}x=a+2\\y=b+2\\z=c+2\end{matrix}\right.\)\(\left(a,b,c>0\right)\). Cần cm \(abc\le1\)
Từ \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\Leftrightarrow\dfrac{1}{a+2}+\dfrac{1}{b+2}+\dfrac{1}{c+2}=1\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{1}{a+2}=\dfrac{1}{2}-\dfrac{1}{b+2}+\dfrac{1}{2}-\dfrac{1}{c+2}\)
\(\ge\dfrac{b}{2\left(b+2\right)}+\dfrac{c}{2\left(c+2\right)}\ge2\sqrt{\dfrac{bc}{4\left(b+2\right)\left(c+2\right)}}\)
Tương tự rồi cộng theo nhân theo vế
\(\dfrac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\dfrac{abc}{\sqrt{\left(a+2\right)^2\left(b+2\right)^2\left(c+2\right)^2}}\)
\(\Leftrightarrow\dfrac{1}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\ge\dfrac{abc}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)
\(\Leftrightarrow abc\ge1\)*đúng hay ta có ĐPCM*
Minh bi nham dau bai, chi co 1 thua so \(\dfrac{2}{x}\) thoi nhe!
Aps dụng bất đẳng thức cô si cho 2 số 1-x và 1-x ta có:
\(\dfrac{1-x+1-z}{2}\ge\sqrt{\left(1-x\right)\left(1-z\right)}\)
\(\Leftrightarrow\left(1-z\right)\left(1-x\right)\le\left(\dfrac{1-z+1-x}{2}\right)^2\)
\(\Leftrightarrow4\left(1-z\right)\left(1-x\right)\le\left(1+y\right)^2\)
\(\Leftrightarrow4\left(1-x\right)\left(1-y\right)\left(1-z\right)\le\left(1+y\right)^2\left(1-y\right)\)
Ta có: \(1-y^2\le1\)
\(\left(1+y\right)^2\left(1-y\right)=\left(1+y\right)\left(1-y\right)^2=\left(x+2y+z\right)\left(1-y\right)^2\)
Do đó: \(4\left(1-x\right)\left(1-y\right)\left(1-z\right)\le x+2y+z\)
Áp dụng BĐT cô-si cho 2 số 1-x và 1-z ta được:
\(\dfrac{1-x+1-z}{2}\ge\sqrt{\left(1-x\right)\left(1-z\right)}\)
\(\Leftrightarrow\text{ ( 1 − x ) ( 1 − z )\le(\dfrac{\text{1 − x + 1 −}z}{2})^2 }\)
\(\Leftrightarrow\text{4 ( 1 − x ) ( 1 − z ) ≤ ( 1 + y ) ^2}\)
\(\Leftrightarrow\text{ 4 ( 1 − x ) ( 1 − z ) ( 1 − y ) ≤ ( 1 + y ) ^2 ( 1 − y )}\)
mặt khác\(\text{ 1 − y ^2 ≤ 1}\)
\(\text{( 1 + y ) ^2 ( 1 − y ) = ( 1 + y ) ( 1 − y ^2) = ( x + 2y + z ) ( 1 − y^2 ) (1+y)^2(1−y)=(1+y)(1−y^2)=(x+2y+z)(1−y^2)}\)Do đó: 4(1−x)(1−y)(1−z)≤x+2y+z