K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A= n3 +2n2 -3n+2 ,    B= n2 -n

Giải: Đặt tính chia:

Muốn chia hết, ta phải có 2 chia hết cho n(n-1),do đó 2 chia hết cho n(vì n là số nguyên)

Ta có:

n

1

-1

2

-2

n-1

0

-2

1

-3

n(n-1)

0

2

2

6

 

loại

  

loại

Vậy n= -1; n = 2

Ví dụ 2:

Tìm số nguyên dương n để n5 +1 chia hết cho n3 +1.



Xem thêm tại: https://toanh7.com/chuyen-de-tim-dieu-kien-chia-het-a12465.html#ixzz79BQBP89v

DD
18 tháng 3 2022

Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì) 

Ta có: 

\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)

Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\)

Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)

Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên. 

8 tháng 8 2018

a)4n+6 chia hết cho 2 với mọi n nên ta có đpcm

b)Cả 2 thừa số dều lẻ với mọi n nên ta có đpcm

8 tháng 8 2018

a) Ta có: 4n+6 có chữ số tận cùng là số chẵn

=> (4n+6).(5n+7) cũng có chữ số tận cùng là số chẵn

Mà các số có chữ số chẵn tận cùng đều chia hết cho 2

Vậy (5n+7).(4n+6) chia hết cho 2

b) Ta thấy: 8n+1 có chữ số tận cùng là một số lẻ

                 6n+5 có chữ số tận cùng cũng là một số lẻ

=> (8n+1).(6n+5) có chữ số tận cùng là một số lẻ

=> (8n+1).(6n+5) không chia hết cho 2

14 tháng 7 2016

 - Nếu a hoặc b chia hết cho 3 => abc chia hết cho 3. 
- Nếu a không chia hết cho 3 và b không chia hết cho 3 => a² chia 3 dư 1, b² chia 3 dư 1 => c² chia 3 dư 2 (vô lí) 
Vậy trường hợp a không chia hết cho 3 và b không chia hết cho 3 không xảy ra => abc chia hết cho 3 (*) 
- Nếu a, b cùng chẵn => ab chia hết cho 4 => abc chia hết cho 4. 
- Nếu a, b cùng lẻ => a = 2t + 1; b = 2k + 1 (t; k thuộc N) 
=> a² + b² = (2t +1)² + (2k + 1)² = 4t² + 4t + 4k² + 4k + 2 = 4(t² + t + k² + k) + 2 => a² + b² chia hết cho 2 nhưng không chia hết cho 4 => c² chia hết cho 2 nhưng không chia hết cho 4 (vô lí) 
Vậy trường hợp a, b cùng lẻ không xảy ra. 
- Nếu a lẻ, b chẵn => c lẻ. Đặt a = 2m + 1; b = 2n; c= 2p + 1. (m, n, p thuộc N). 
=> a² + b² = c² 
<=> (2m + 1)² + (2n)² = (2p + 1)² 
<=> 4m² + 4m + 1 + 4n² = 4p² + 4p + 1 
<=> n² = p² + p - m² - m 
<=> n² = p(p + 1) - m(m + 1). 
p(p + 1) là tích 2 số tự nhiên liên tiếp => p(p + 1) chia hết cho 2. Cmtt => m(m + 1) chia hết cho 2 => p(p + 1) - m(m + 1) chia hết cho 2 => n² chia hết cho 2 => n chia hết cho 2 => b chia hết cho 4 => abc chia hết cho 4. 
- Nếu a chẵn, b lẻ. Cmtt => a chia hết cho 4 => abc chia hết cho 4. 
Vậy abc chia hết cho 4 (**) 
c) - Nếu a hoặc b chia hết cho 5 => abc chia hết cho 5. 
- Nếu a không chia hết cho 5 và b không chia hết cho 5 => a² chia 5 dư 1 hoặc 4; b² chia 5 dư 1 hoặc 4. 
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 1 => c² chia 5 dư 2 (vô lí) 
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 4=> c² chia 5 dư 0 => c chia hết cho 5. 
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 1 => c² chia 5 dư 0 => c chia hết cho 5. 
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 4 => c² chia 5 dư 3 (vô lí). 
Vậy ta luôn tìm được một giá trị của a, b, c thỏa mãn abc chia hết cho 5. (***) 
Từ (*), (**), (***), mà 3, 4 đôi một nguyên tố cùng nhau => ab chia hết cho 3.4 hay abc chia hết cho 12. (đpcm)

 

11 tháng 10 2017

a,   Nếu \(a⋮2\Rightarrow\)có 1 số chia hết cho 2

 Nếu a ko chia hết cho 2 =>a là số lẻ

             a=2k+1

=>a+1=(2k+1)+1

=>2k+2chia hết cho 2(vì 2k chia hết cho 2 và 2 cũng chia hết cho 2)

b,     Nếu a chia hết cho 3=> có 1 số chia hết cho 3

        Nếu a=3k+1 thì =>a+2=3k+3, chia hết cho 3

                 nếu a=3k+2 thì

        =>a+1=3k+3, chia hết cho 3.

11 tháng 10 2017

A) Gọi 2 số tự nhiên liên tiếp là n,n +1(n thuộc N)

Nếu nguyễn chia hết cho 2 thì ta có điều chứng tỏ 

Nếu = 2k + 1 thì 2 + 1 = 2k +2 chia hết cho 2

B) 

Nếu n chia hết cho 2 thì ta có điều cần chứng tỏ

Nếu n = 2k + 1 thì n + 1 = 2k +2 chia hết cho 2

b)Gọi 2 số tự nhiên liên tiếp là:n,n+1,n+2(n

a,  b : 7 dư 4 ; c chia 7 dư 3 mà 4 + 3 = 7 chia hết cho 7 

=> b+c chia hết cho 7 

b, ( tương tự dựa vào đó mà lm nhé mày ) biết chưa quỷ cái

30 tháng 11 2024

nói trên mạng mất dạy dữ hen mày 5 năm tao vẫn xem đấy 

 

24 tháng 10 2021

TL:

a)  Nếu a và b cùng là số chẵn thì ab﴾a+b﴿chia hết cho 2

 nếu a chẵn,b lẻ﴾hoặc a lẻ,b chẵn﴿thì ab ﴾a+b﴿ chia hết cho 2

Nếu a và b cùng lẻ thì ﴾a+b﴿ chẵn nên ﴾a+b﴿chia hết cho 2,vậy ab﴾a+b﴿ chia hết cho 2

Vậy nếu a,b thuộc N thì ab﴾a+b﴿ chia hết cho 2 

^HT^

24 tháng 10 2021

TL:

- nếu a và b cùng là số chẵn thì ab(a+b)chia hết cho 2

- nếu a chẵn,b lẻ(hoặc a lẻ,b chẵn)thì ab (a+b) chia hết cho 2

-nếu a và b cùng lẻ thì (a+b) chẵn nên (a+b)chia hết cho 2,vậy ab(a+b) chia hết cho 2

vậy nếu a,b thuộc N thì ab(a+b) chia hết cho 2

 ^HT^
9 tháng 8 2019

Gọi chữ số hàng chục và hàng đơn vị của số là a

Khi đó chữ số hàng trăm của số đó là 7 - 2 * a ( vì tổng các chữ số của số đó là 7 )

Do đó số đó có dạng :\(\overline{\left(7-2\times a\right)aa}=100\times\left(7-2\times a\right)+10\times a+a\)

\(=700-200\times a+10\times a+a\)

\(=700-190\times a+a\)

\(=700-189\times a\)

Ta có : \(700⋮7;189⋮7\Rightarrow700-189\times a⋮7\)

Vậy số đó chia hết cho 7

9 tháng 8 2019

Gọi số đó là Aef\(\left(\overline{ef}⋮4\right)\)

Ta có : \(\overline{Aef}=10^n\times d+\overline{ef}=4\times25\times10^{n-1}\times d+\overline{ef}\)( với n là số mũ của A )

Vì : \(4⋮4;\overline{ef}⋮4\)

\(\Rightarrow10^n\times d+\overline{ef}⋮4\)

\(\Rightarrow\overline{Aef}⋮4\)

Vậy nếu 1 số có 2 chữ số tận cùng chia hết cho 4 thì số đó chia hết cho 4

15 tháng 11 2021

1)  A=62020+62021+62022+62023

    A= ( 62020+62021) +  ( 62022+62023)

    A= 62020.( 1+6) + 62022.( 1+6)

    A= 62020.7+62022.7

    A= 7.( 62020+62022)

Vì 7 chia hết cho 7 => 7.(62020+62022) chia hết cho 7 hay A chia hết cho 7.

Vậy A chia hết cho 7

    _HT_

15 tháng 11 2021

2)  1+2+3+...+n=1275

Ta thấy dãy số trên là dãy số cách đều nên có khoảng cách là 1 đơn vị 

=> Dãy số trên có n số hạng

Tổng của dãy số trên là :   (n+1).n:2 = 1275

                                          (n+1).n= 1275.2=2550

Mà n và n+1 là 2 số tự nhiên liên tiếp => (n+1).n = 51.50

=> n=50 ( vì n< n+1)

  Vậy n=50

_HT_